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Abstract

In recent years, the concept of price of anarchy has emerged as a tool to measure
the efficiency of Nash equilibria in noncooperative games. In this paper, we apply
an adaptation of this concept to subgame-perfect Nash equilibria arising in three
different dynamic noncooperative game-theoretic models for the parallel trade of
pharmaceuticals, where parallel trade refers to the arbitrage opportunity created
when the same drug is sold in two countries, with differences in prices and/or
reimbursement regulations. More specifically, for three different expressions of
the global welfare of two countries, we find in closed form its optimal value,
then we evaluate for such expressions the prices of anarchy associated with the
subgame-perfect Nash equilibria of three dynamic noncooperative games model-
ing the interaction between a manufacturer in the first country and a distributor
in the second country, respectively in the case of parallel trade banning for the
distributor, parallel trade threat from the distributor (but no occurrence of parallel
trade at equilibrium), and actual parallel trade occurrence at equilibrium. Finally,
we evaluate the dependence of such prices of anarchy on the relative market size
of the exporting country with respect to the importing one, and on the per-unit
parallel trade cost. Extensions of the methodology to other noncooperative game-
theoretic models of parallel trade of pharmaceuticals are discussed.

Keywords:
Parallel trade freedom; pharmaceuticals; noncooperative game theory;

berna.tuncay@imtlucca.it



subgame-perfect Nash equilibrium; price of anarchy.

1. Introduction

In general, drug prices vary across countries. Differemegsicing and re-
imbursement regulations may create arbitrage opporésitwhich is known as
parallel trade. When parallel trade is allowed by policynmake@arallel traders
may buy drugs in a country where prices are lower, then ddfsah in a country
where prices are higher. As locally sourced and paralldegladrugs are produced
by the same manufacturer, they are exactly the same (aparffossibly different
packagings), which creates opportunities for potentiedlfel traders. According
to some policymakers, parallel trade should be permitted asans to reduce
pharmaceutical prices in re-importing countries. Howgeweainufacturers often
see parallel trade as a potential threat to their investsneamesearch and devel-
opment. As a consequence, there is a strong debate aboyigheumnity or not
of permitting parallel trade [1, 2, 3].

Since parallel traders and manufacturers are differenttageith their own
objectives, parallel trade and its consequences on thalgledlfare of the in-
volved countries have been investigated in the literatreugh various nonco-
operative game-theoretic models [2, 4, 5, 6, 7]. For ingam@according to the
model developed in [5], restricting parallel trade is alwaglvantageous for the
manufacturer, but it may either increase or decrease thableelfare of the two
countries. However, a different model is used in [2], shantimat parallel trade
may even increase the profit of a pharmaceutical firm, depgnal its bargain-
ing power and on the relative market size of the exportinghtquwith respect
to the importing one. In [4], two dynamic noncooperative garare proposed to
investigate the equilibrium behavior of a manufactureated in a country and a
distributor belonging to a second country, when paralkdiér from the distribu-
tor is, respectively, permitted/forbidden. In the firsteas is shown therein that
parallel trade actually does not even occur at equilibriue, (the quantity of re-
imported product from the parallel traderO) but the threat of potential parallel
trade (or parallel trade freedom) influences the equilibrbehavior of both play-
ers, changing the equilibrium prices and quantities of tfealpct sold by each
of them. In [6], parallel trade is examined through infinteépeated noncoop-
erative games with perfect and complete information, itigasng the effect of
different policies enabling or not parallel trade on theoassted subgame-perfect
Nash equilibria. Differently from [4], in this case pardlteade actually occurs



at equilibrium, when parallel trade is permittélchis also happens for the above-
mentioned model investigated in [5]Finally, for other noncooperative game-
theoretic models of parallel trade, we refer the interest@der to the monograph
[7].

Within this noncooperative game-theoretic framework,hia paper we pro-
pose the use of the concept of price of anatdBy, as a means to investigate the
efficiency of solutions to noncooperative game-theoretclets of parallel trade.
In the present context, the price of anarchy is the ratio betwthe optimal value
of the global welfare (i.e., the one obtained by a hypotla¢tiobal planner, by
solving a suitable optimization problem) and its value ot#d in correspondence
of the “worst” equilibrium of the game. More specifically,time paper we evaluate
the price of anarchy for the two above-mentioned dynamicooperative games
proposed in [7] to model the interaction between a manufacand a distributor,
assuming, respectivelgarallel trade banning for the distributor and paralledléra
threat from the distributor (but no occurrence of paraliatie at equilibrium), and
for the dynamic noncooperative game proposed in [5], focWiinere is an actual
occurrence of parallel trade at equilibriutdence, we evaluate the effect dif-
ferent levels oparallel trade freedom on the price of anarchy. In order topate
the latter, we consider three different models for the dleledfare function of the
two countries, i.e., the Bentham model and two specificatibtize Rawls model.
Then, we compare the expressions of the price of anarchyneltéor the nonco-
operative games and global welfare models examined in therp&he original
contributions of the paper are, for each of the three modelseoglobal welfare
function, the evaluation of its optimal value in closed foramd the consequent
computation of the prices of anarcfyr the two noncooperative games proposed
in [7] and the one proposed in [5]

The paper is organized as follows. Section 2 summarizesvibecountry
modelsfor the trade of pharmaceuticals presentefbirand[7]. In Section 3, we
express in closed form the optimal value of the global weltzrthe two countries
for the Bentham and Rawls models, when parallel trade is peaiorbidden.
The two dynamic noncooperative games proposed in [7] to huatallel trade
banning/threataire shortly summarized in Section tdgether with the one pro-
posed in [5] to model the occurrence of parallel trade atldmgiwim. Then, in
Section 5, we evaluate for the Bentham and Rawls models thespatanar-

10riginally proposed in [8] under the name of “coordinatiatio”; nowadays, the term “price
of anarchy” is more common [9].



chy associated with the subgame-perfect Nash equilibsaich games, and their
dependence on the relative market size of the two countndsoa the per-unit
parallel trade cost. Finally, Section 6 discusses the petaresults and mentions
possible extensions of the methodology to other noncotipergame-theoretic
models of parallel trade investigated in the literature.

2. Background: a two-country model for the trade of pharmacedicals

In this section, we summarize the models for the trade ofrphaeuticals con-
sidered in5] and[7], involving two countries, characterized by differemndand
functions of one product possibly subject to parallel tradibe model includes
both cases in which there is parallel trade freedom/banrihgye precisely, the
following is assumed in the model. The first country (namedufdry A” in
the following) is the one in which a drug is fabricated by a nfacturer with a
marginal cost of production equal to(e.g, becausehe most relevant costs are
the ones of research and developmeBince the drug can be also sold in a sec-
ond country (named “countri” in the following), the countryA is the exporting
country, whereas the countfy is the importing country. However, when parallel
trade from the country3 to the countryA is permitted, the countryl is also the
re-importing country. The demand functions of the drug ia tlvo countriesA
and B are modeled by the following linear functions, respectivel

qa =va —bpy, (1)

g = a — bpp, (2)

whereq, (respectivelygg) is the quantity of the drug that the consumers in the
country A (respectively,B) are willing to buy at the price 4 (respectivelypg),

a,b > 0 are two constants (the same for both countries),ansd 0 is another
constant, which describes the heterogeneity of the casitrand B with respect

to the market size (indeed, in the limit case of very smatigsj one getg, ~ va
andgp ~ a, so in that case, ~ ¢, and~y measures the relative market size of
the countryA with respect to the countrg). After its production, the drug can
be

(i) sold by the manufacturer of the countdyto the consumers of the country
A in quantity¢"“ at the wholesale pricg;";

(i) sold by the manufacturer of the countdyto the distributor of the countrig
in quantityqy, " at the wholesale pricg);";



(iif) sold by the distributor of the countrys to the consumers of the countfy
in quantityq“ at the retail pricgy“;

(iv) (only when there is parallel trade freedom) sold by thetributor of the
country B to the consumers of the countdyin quantityqf’c at the retail
pricepf’c. In doing this, the distributor incurs a fixed per-unit péeitrade
costt > 0. When, instead, parallel trade is forbidden, one @ﬁt@ =0.

The model of trade considered in [5] differs from the one if§r the simpli-
fying assumptions = 1 andb = 1 (which we do not make in the paper), and for
the additional presence of a transfer paynmiént> 0 (franchise fee), which is paid
by the distributor to the manufacturer, and which we alsduthe in the model.
Moreover, differently from [5] and [7], we also include inetlmodel a total fixed
cost of productiorC» > 0, which can be interpreted as the cost of research and
development, and is used later in the paper by the manuédtudecide whether
to do research and development (then, producing the drugptdo do it (then,
producing nothing). Finally, while the total fixed cost obguctionC'r cannot be
modified, the transfer paymei} can be set by to its maximum value for which
the surplus of the distributor is non-negative, as done]inNdtice that, according
to the model above, only the distributor can sell to the coress in the country
B. When there is parallel trade freedom, the distributor can akll to the con-
sumers in the countryd (in the model, parallel trade from the consumers in the
country B to the consumers in the countdyis always forbidden). Of course, one
has also the constrainf"” = ¢ + ¢, i.e., the total quantity of the product
sold to the distributor (by the manufacturer) is equal tottital quantity of the
product sold by the distributor (to the consumers in the tiesA and B). This
simplifies togly"” = ¢'“ when parallel trade is forbidden. Finally, in this model
qa = q]X’C + qf’c Is the quantity of the product sold to the consumers in the
country A, andgg = qg’c is the quantity of the product sold to the consumers in
the countryB. The process above is illustrated in Figure 1.

3. Optimization of the global welfare function

In this section, using the two-country model for the trad@lodrmaceuticals
described in Section 2, we first determine the surpluseseohtanufacturer, of
the distributor, and of the consumers in both countries.nTba the basis of the
obtained formulas, we provide expressions for the globdfanefunction under
three different models for it. Finally, in Subsections 32, 3.3, respectively, we
find in closed form the optimal value of the global welfaredtion itself (i.e., the



Country A Country B

Figure 1: The model of trade among the manufacturer, the distribatod, the
consumers in the countriesand B when there is parallel trade freedom. When
parallel trade is forbidden, one sgtg“ = 0.

one that could be found by a hypothetical global planner, dlyisg a suitable
optimization problem), for each of the three models. Thée, results of this
analysis are exploited in Section 5 as one of the ingredresgged to compute the
price of anarchy for th@oncooperative game-theoretic models of parallel trade
presented in Section 4.

Proposition 3.1. For the two-country model of trade of pharmaceuticals ddxamti
in Section 2, one has the following expressions for the ssgdwf the manufac-
turer, of the distributor, and of the consumers in the coiastd and B.

(a) When the manufacturer does research and development:
(i) Manufacturer’s surplusy,:

S = qy " + oy Cay " —Cr + Tp. 3)
(i) Distributor’s surplusSp:
,C , ,C ,C , ,C
Sp=a =" —0a + g =y )y ~Te. (4
(i) Consumers’ surplusc, in the countryA:
M,C D,C

2
g, % (mc  DC M,C M,C D,C DC <QA tda )
0a = 3 \da T4a ) =Pa qa —PA qx — b '

(%)




(iv) Consumers’ surplusc,, in the countryB:

a D,C\ D, (qgcy
Sen = (5 ~787) -2 ©

(b) When the manufacturer does no research and development:
() Manufacturer’s surplusy,:

Sy =0. (7)
(i) Distributor’s surplusSp:

Sp=0. (8)
(i) Consumers’ surplusc, in the countryA:

SCA =0. (9)

(iv) Consumers’ surplusc,, in the countryB:

Se, =0. (10)

Proof. Case (a):(i), (ii) The proofs of formulas (3) and (4) are immediate.

(ii) In order to prove formula (5), let us suppose that, @& thtalg, = qﬁg’cqthD’C
units of the product sold to the consumers in the couAtrthe firstqff’ ones are
sold by the manufacturer, whereas the Ig$t" ones are sold by the distributor.
Then, taking into account the expression (1) of the demamnction in the country
A, the consumers’ surplus in the counttyfor the firstqi\f’c units of the product

IS

M,C

. <qM,C)2
AT (ya—q va A
o) = /O ( — pAM’C> dg = (— — pﬁf’c> 40— (11

b b 2b

Similarly, the consumers’ surplus in the counttyor the remaininng’c units of
the product is

M,C

(I1) a3 e a —q D,C
SCA :/ ( b — DA ) dq

M,C
qa

2 2
_ (ﬂ D,C) 2C — (q%(j ;rbqf’(j) n (qiij) . (12)

b Pa




Then, formula (5) is obtained by summing (11) and (12). Iimportant to observe
that one obtains exactly the same expression (5p¢qrif other choices for the
seller are considered, for each unit of the product. Foams, if one assumes
instead that the firs@f’c units of the product bought by the consumers in the
country A are sold by the distributor, whereas the I@%tc ones are sold by the
manufacturer, formulas (11) and (12) are replaced, respdgtby

2
W (ya—q va e\ De (q/?c)
! - D D
SgA) :/0 ( _ng) dg = <7 — Py >QA7 BT (13)

M,C

ay“+ay
QU _ a—4q  mc d
Ca D.C b Pa q

qy
2 2
D,C M,C D,C
= (-7 i - (i + ) + G (14)
b A A 2b 2

and also the sum of (13) and (14) provides the expressio(S)f, .
(iv) Finally, formula (6) is proved likewise formula (5), ting that the consumers
in the countryB buy only from the distributor:

qg’c a—q D.C a D,C\ D,C <q30>2
Sch/ ( 4 ) dq = (g—pB’ )qB’ B . (15)
0

Case (b):(i), (i), (iii), (iv) When the manufacturer does no reseagctd develop-
ment, no costs are incurred and no quantities are exchasged, the surpluses
are equal tad. |

We now define the following three models for the global welfamction, to
be maximized by the global planner under suitable conggain the following,
we use the subscriptP7™” to denote the situation in which there is parallel trade
freedom, whereas the subscript P7" refers to the case in which parallel trade
is not permitted.

(i) Bentham model it is defined as the sum of all the surpluses. Wlhiesn
manufacturer does research and developraedtparallel trade is permitted,



it has the following expressiérGWJ(ﬁ), which is a functiononly of the
total fixed cost of production and of the traded quantifies simplicity,
here we have removed the dependenceg 61, using the constrainty "~ =

D.C , DC
44 +4qp

B M,C  D,C D,C
GWI(DT)(CF7 da’” 94 4B’ )

=Sy +Sp+ SCA + SCB

mc | Do\ p,c\>
7@< +qDC>_ da” Tla a DC _ 5
A —

b 2% —tay + ap T

(16)

Whenthe manufacturer does research and developmenparadiel trade is
not permitted, it has the following simpler express@H "), :

GW](VBP?T(CFa Qi‘{ C’ C]g C)
=Su + Sp + Se, + Scp

c c)?
vbaq%c @%q;}c @—OF, (17)

which is obtained from (16) by setting"“ = 0.
Finally, when the manufacturer does no research and dewelol one has
obvioustGW](V@T = 0.

(i) Rawls model, first specification it is defined as the minimum between the
national welfares of the two countries, where each natiwve#fhre is defined
as the sum of the surpluses of the entities belonging to thattcy. Hence,
whenthe manufacturer does research and developmenparallel trade
is permitted, it has the following expressi@W}?’”, which is a function
of the total fixed cost of production, of the transfer paymehthe prices
involving entities belonging to different countries, arfcath the quantities:

2Formula (16) is derived using the expressionsS$af, Sp, Sc,, andSc,, prowded by for-

mulas (3), (4), (5), and (6), respectively, taking into aguithe constraingy ™ = ¢ 4 ¢5-¢,

and observing that all the terms containing prices candghahe summation.



R,I D,C M,D M,C D,C MD DC
GWI(DT >(CF7TP7PA P 44 494 49 4p )

= min{SJ\,1+SCA7SD+SCB}

M.C | D.C 2
M,D M,D , V@ 9a 9a

= min {pB a5+ 5 <qz1,c +q£"c) _ g,c g,c _ 5 -Cr+1Tp,
()"
(pf’c —pfg\f’D - t) qf’c + (% - pgj’D) qg’c - E;b —Tp} .
(18)

Whenthe manufacturer does research and developmenpanadle! trade is
not permitted, it has the following simpler express@W}ﬁ;Q:

R,I M,D M,C M,D D,C
GW]EJPT)(CF7TP7PB 7qA JQB 7QB )

= min{SM + SC’A,SD + SCB}

( M,C>2
. MD MD |, V4 MC Qa
= min pB qB + ?CIA — 2—b s

p.c\?
() B
(19)

Finally, when the manufacturer does no research and dewelof one has
obvioustGW](ﬁ;]T) = 0.

(i) Rawls model, second specificatiant is defined as the minimum of all the
surpluses. Hence, whahe manufacturer does research and development
and parallel trade is permitted, it has the following expreasielV ',
which is a function othe total fixed cost of production, of the transfer pay-

ment, and o&ll the prices and quantities:

10



R,II M,.Cc DC M,D DC MC DC MD D,C
GW](DT )(CFvTPva apA yPp 7pB yda aQA ydp 7QB )

= min{Su, Sp, Sc,,Scy }

. M,C M,C ]\/[D MD

D,C M,D D,C D,C M,D\ D,C
Py~ —pp =ty + g —pg ey —Ip,

(a4 +a8)
ya D,C M,C _M,C D,C D,C qa
? ‘|‘qA —PA 4y — P4 44 % )

p Pp )i 2

(e g @3(’)},

(20)

Whenthe manufacturer does research and developmenpamdel trade is
not permitted, it has the following simpler express'(éWfﬁIT”:
GW](VI%?) (CF7 TP7pZ[ Ca pf\g/[ D7 pg C> Q:]X[ C7 QB]Y[ DJ qlB? C)
= min{SMv SD7 SCAa SCB}

= min {p% qu‘{lc + pqung—CF +1Tp,

, C
(s =y )ap =Tp.
2

M,C

<7a pMC MC> <qA )

B Pa s o

3937 — P 4p’ b

2
D,C
D.C DC <qB ) }
(21)
Finally, when the manufacturer does no research and deweloip one has
obviouslyGW /51D = 0.

In the following subsections, for each model of the globalfare function,
we find its optimal value for a global planner who maximizesnter suitable
assumptions. In general, two kinds of results are obtained:when the manu-
facturer does research and development, the other one Whemeainufacturer does

11



no research and development. Of the two situations, thegpanner prefers the
one with the largest value of the global welfare.

Remark 3.2. Since, for each model, the second situation is associatéda/i
value of the global welfare, the optimal global welfare foe tglobal planner is
always non-negative. Moreover, an inspection of the privafse next subsections
shows that the corresponding optimal solution for the dlgb@nner is always
associated with non-negative surpluses for all the estitieolved (manufacturer,
distributor, and consumers of both countries). [ |

3.1. Optimization of the global welfare under the Benthamehod

We first consider the case in whitlie manufacturer does research and devel-
opment angarallel trade is permitted. Then, in order to find the optivadue of
the global welfareGW}ﬁ) provided by formula (16) under the Bentham model,
the global planner has to solve the following optimizatioalpgem:

. (B) M,C D.C DC
maximize GW ’ ’ '
M,C .D,C D,C PT (CF’qA da 4B )

94 44 4p

Mm,c  D,C D,C
s. t. QA 7QA 7q3 Z O (22)

Of course, when the manufacturer does no research and gevetd and parallel
trade is permitted, there is nothing to optimize, and thenogdtvalue ofGWI(D?
is 0.

Proposition 3.3. When the manufacturer does research and developrttemtp-
timal value of the objectivé}W}ﬁ) of the optimization problem (22) modeling
parallel trade freedom under the Bentham global welfare mzde

° 2+1 CL2
(GW,&?) - %—CF. (23)

When the manufacturer does no research and developmentptiveal value of
(B) ;
GWp, is
(GW,&?) ~0. (24)

12



Proof. We start considering the case in which the manufacturer dessarch
and developmentOne can observe that the global welfﬁ@[/g) provided by
formula (16) is a function having the separable structure

GWS (CradC a0 an ) = GWERD (64 ) + Gw i ™ (¢5©) , (25)

where
c . Do\
(QA +qy
AW (@) a2 ) = 22 (a4 + a7 7) - 5 ) — 1) ~Cr,
(26)
and
(43"
B
Wi (a5 ) =S4 = 5 (27)

Hence, due to the separability of its objective function amthe form of its con-
straints, solving the optimization problem (22) is redutedolving the two fol-
lowing optimization problems:

(J\/IC+qA )2
- (B,I), M,C D,C\_ 7% ( M,C D,C _ .. D,C_
maximize GWpar(ay a4, ) = b< +aq, ) % tqg, " —Cr
ap vy
st ay a9 >0, (28)
and
()
(B,IT); D,C a pc \'B
maximize GWPT )(qB’ )= —qp’ —
q b 2b
B
D,C
s. t. a5 > 0. (29)

We now consider the two problems separately.

(i) The optimization problem (28) is a concave quadratic imézation prob-
lem. By introducing the Lagrangian function

M,C D,C M,C D,C B,I M,C M,C M,C D,C D,C
LD (GC (D 2C 00y — qw B (g DY LN O O g
(30)

13



it is solved by imposing the following Karush-Kuhn-Tuckegationality con-
ditions’:

( M,C D,C
oL gy
stationarity : —C = _ 04 94 T4 + M%’C -0,
gy b b
M,C
ﬁ:ﬂ_i_t_i_ﬂDc_o
o< b b . ’
primal feasibility : qi\(lc, qD ¢ > 0,
dual feasibility : u%c, Do 0,
complementary slackness : u% Cq% C, ,ug CqD C=0.
(31)

Then, it is straightforward to see that, for any 0, the system (31) has the
unique solution

¢ =a,
D,C
QA7 - 07
MC (32)
/’LA - 07
.C
pat =t
Fort = 0, one gets the infinite number of solutions described by
qﬂfc,qfc > 05t gy +ay" =na,
MA’ — 0 , (33)
C
ug =0.

Finally, for both formulas (32) and (33), one has = ¢%"“ + ¢ = 7a.

Hence, for both cases, the value of the objectiié’>:" (¢3¢ ¢7¢) at
optimality is

2 2 2
© a a a
(GW}#”) - —Wb) O — —(7%) - —(7%) O (34)

3For both optimization problems (28) and (29), the qualifarabf the constraints holds, due to

their linearity [10]. Moreover, for both problems, Karuklhn-Tucker optimality conditions are
necessary and sufficient for optimality, due to the congasithe respective objective functions.

14



(i) Similarly, also the optimization problem (29) is a c@ve quadratic maxi-
mization problem. Again, by introducing the Lagrangiandiion

@)
a B
LUD(g ¢ up©) = gqg’c BT (35)

also the optimization problem (29) is solved by imposingKlaeush-Kuhn-
Tucker optimality conditions, which have now the followifggm:

8L(H)
stationarity : 8q§70 = % - qT + Hg’c =0,
. R D,C
primal feasibility : g5 =0, (36)
dual feasibility : ug’c >0,
complementary slackness : u[B)’ng’C =0.

Then, one can see that, for any 0, the system (36) has the unique solution

qD,O —
{ b (37)
pg =0.
. . . (BJ) D,C . . .
Finally, the value of the objectiv&@V ;"' (¢ ) at optimality is
2 2 2
(BID)® _ 4= 47 _ 07
(GWPT ) b 20 2 (38)

Concluding, the optimal value of the objectic@V > (¢%/"7 ¢ ¢2¢) of

the original optimization problem (22) modeling paralielde freedom under the
Bentham global welfare model is

(GW}?)O - (GW}?’”)O + (GW}?J”)O - W—OF,

which is (23). Finally, for the case in which the manufacturer does no rebea
and development, (24) follows trivially from the definitiah the present global
welfare function in Section 3. [ |

15



Remark 3.4. The meaning of the optimal solutions of the optimizationigbeons
(28) and (29) considered in the proof of Proposition 3.3 esftillowing. Since
there is no dependence of their objectives on the pricescaneassume at first
that all the prices are equal @0 In such a case, th&urpluses of the manufacturer
and of the distributowould be—C'» and0, respectively Moreover, at optimality,
the consumers in each country would obtain the maximumekksjuantity of the
product (i.e., taking into account the expressions (1) 2)@{ the respective de-
mand functions;ya in the countryA, anda in the countryB). As a consequence,
using formula (5), the corresponding surplus for the coressnn the countryd
would be

g, (va)® _ (ya)’ 29

CA_W(/WI)_ 2 - 2% ( )

whereas, using formula (6), the corresponding surplushiferconsumers in the
country B would be

a a’> a?

SCB_EQ_%_Q_Z)' (40)
Hence, their sum would be equal to (23). For the case of nom4zeces, the
optimal sum of all the surpluses would be the same as in (28)it bvould be
re-distributed among the manufacturer, the distributod #he consumers in the

two countries. [ |

For the case in which parallel trade is forbidden, one hasédle expression
(17) for the Bentham global welfare functiathJ(V@T, and solve the following
optimization problem:

. (B) MC D.C
maximize GWrpr(Croaa ™ ,q5")
A 9B
st )% apC >0 (41)

Again, when the manufacturer does no research and devetipane parallel
trade is forbidden, there is nothing to optimize, and thénogitvalue ofGWJEﬁD)T
is 0.

Proposition 3.5. When the manufacturer does research and developrttemtp-
timal value of the objectivé?W](Vi)T of the optimization problem (41) modeling
parallel trade banning under the Bentham global welfare nagle

(v’ +1)a’

(aw@Tf = =2 —Cr. (42)

16



When the manufacturer does no research and developmentptireal value of

awll) s

(GW}V@T) —0.

(o}

(43)

Proof. As shown in the proof of Proposition 3.5, for ahy 0, among the optimal
solutions of the optimization problem (22), there is always for whichqf’c =
0, which is feasible for the more constrained optimizatioabpem (41) (i.e., it
satisfies all its constraints). Hence, one obtains @Bgreas (43) follows trivially
from the definition of the present global welfare functiorSection 3 [ |

3.2. Optimization of the global welfare under the first speatfon of the Rawls

model

We first consider the case in whitie manufacturer does research and devel-
opment, there is no transfer payment, émete is parallel trade freedom. Then, by
using the expression (18) for the global Welfém/}?p’” under the first specifica-
tion of the Rawls model, and introducing the reduced row vetmtq»rices;_ared =

and the row vector of quantities=

M,C D,C M,D DC

(CIA 7QA >qB 7QB 1 the

optimization problem to be solved by the global plannerliis tase is formulated

D,C _M.,D
pA 7pB
as
maximize
T D,C
PP, PE
s. t.

GWir(Cr, Trp, 1)

M,D _ DC . DC
48" =44 +4qg
D,C M,D
pA Z pB +t7
D,C M,D
P =D,
p_>0,pp°>0,¢g>0,

“red — =

Tp =0, (44)
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which is a maximin optimization problenA related maximin optimization prob-
lemis

o (R.I)
maximize  GWpy (Cr,Tp.p 4 q)
TP’Bred’pB 4

M,D _  D,C D,C
S. t. qB = qA +qB 5

D,C M.,D

pA Z pB + t )
D,C M,D

P =

_pB )
P, > 005" >0,g>0,
0<Tp<Sph, (45)

which is obtained by replacing the constraifit = 0 in (44) by 0 < Tp <
Sp (i.e., a possibly non-zero transfer payment is paid by tls¢ridutor to the
manufacturer).

Proposition 3.6. When the manufacturer does research and developrtientp-
timal value of the objectivé?W}?J]) of the optimizatiorproblems (44) and (45)
modeling parallel trade freedom under the first specifiaatid the Rawls global
welfare model is

(V+1a*> Cp 1 BN\° ., (va)? a2
= (GW f 1l —Cp>——

(Gw(R,I)>O _ 4 2 2 ( PT) DY P=ap
PT 2 1) 2 ( )2 2
(D L it U o, o %

2b r 2b T

When the manufacturer does no research and developmentptiveal value of
GWpris
<GW}(};’”> ~0. 47)

Proof. We first consider the case of the optimization problem (44emthe man-
ufacturer does research and developm8irice the global welfaréYW,(D?’I Jisthe
minimum between the national welfare of the coundrand the national welfare

of the countryB, and the maximum value of their sumqs}W}?)o, one gets
r0\° L (B)\°
(GWPT ) <3 (GWPT) . (48)
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To prove (46), it remains to show that, for every sufficierdiyalle > 0, there
exists a feasible SOIUtiO{ICF, 0,p1%) L (ph e q(€>} of the optimization problem
(44) for which one has

GWHED (Cr 0,9 ¢9)> Qnmw) - (49)

l\:)ln—

To obtain such a feasible solutic{rﬁp, 0,p1), (pp )@, q(g)} we start by con-

sidering the case in which;” = ¢, pi'” = p = 0, ¢¥"° = ~ya, ¢}° = 0,
qnP = a, andgn® = a, which corresponds to the feasible solution
{Cr. o5, 5.3} = {Cr, 0,(4,0),0, (10,0,0,0)} (50)

In such a situation, one hﬁﬁ/[/,(gBT)(OF, 0.5 _.4) = (GWé?) (as shown in the

proof of Proposition 3.3), andvhen - Cp > g,
: N . [ (ya)? a’ a?
GW@W@N@WQme{%-é%% =0 (51)

Then, starting fronthe feasible solution (50)for which the national welfare in
the countryA is greater than the national welfare in the counlty- one can
transfer part of the current national welfare from the count to the coun-
try B, by increasing the price’)’ “ of an amountAp > 0 and the quantity
qA ¢ of an amountAq € (0,~al], and decreasing the quanttjﬁ"o of the same
amountAgq. In this way, the sum of the two national welfares decreadges o
tAq (as the quantitieg’"“ + ¢/)'“ and¢5“ are kept constant, but a decrease
of tAq is incurred, due to the parallel trade costs). More spetlifictne na-
tional welfare of the countryl decreases ofAp + t)Aq, whereas the national
welfare of the countryB increases ofApAq. Now, we chooseAp and Aq in

such a way thatAp + t)Aq = W—% andtAq = ¢ (i.e.,, Ag = ¢ and

Ap = (W—%—F — g) t), and we define the new feasible solution

{CFa 7preda (pD C)(E) ) Q(S)}

B (v = 1)a*? Cp £ €
= {CF,O,((1+ m 5 € t,0 70,<’ya t,t,a,a> :
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By constructlon,p and q(E satisfy (49), which completes the proof of (46),
taking the limit as tends toO for the case in whlcﬁ& Cr > 5.
When |02 _ CF‘ <a

55 ° formula (51) changes to

2 2 2
GW}(’]}D@ ) = min{w@ —CF,G—} = (7202) - Cp. (53)

Also in this case, one can transfer part of the current natiwelfare from the
country B to the countryA, by raising the pricg}, " andpy“ of the same amount

Ap = 85002 | Cr allowing one to find again two choices gf) andq(® that
satisfy (49), hence proving (46) also for thls case.

As a last case, Whef:?z‘;)—)2 —Cr < _2b' the national welfare in the country
A is always negative, whereas the national welfare in the ttpuB is always
non-negative, so, starting from the feasible solution (68 can transfer all the
current positive national welfare from the counfyto the countryA, by raising
the pricepy” andp“ of the same amountp = 2. In this case, the first

country obtains its maximum possible (negative) value ef thtional welfare,

which is &2 ) — CF.

For the optlmization problem (45), one obtains the sameesgions as above
of the optimal value of the objectivéwl(f;l), due to the fact that the optimal
value of the objective in (44) satisfies with equality the eppound (48) - which
is valid also for the problem (45) - and the fact that (45) ssleonstrained than
(44), hence the optimal value of its objective is larger thaaqual to the optimal
value of the same objective in (44).

Finally, for the case in which the manufacturer does no rekeand devel-
opment, (47) follows trivially from the definition of the ment global welfare
function in Section 3. [ |

For the case in whicthe manufacturer does research and development, there is
no transfer payment, arghrallel trade is forbidden, one has to use the expression
(19) for the global welfare functioﬁlW}ﬁ;? under the first specification of the
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Rawls model, and solve the following optimization problem:

C. (R,I) MD MC MD DC
maximize GW Cp,T ’ ’ ’ ’
Ty MDD D.C MC M,D D,C NPT( mAipPPp 544 5498 4B )
pP:Pp Pp 94 4 4p

MD _ DC
s. t. 4 =49 >
DC ,  M,D
Pp =ZPp

M,D DC MC M,D D,C’>O
pB 7pB 7QA >qB 7QB jil )

Tp =0, (54)

which is also a maximin optimization problernfgain, a related maximin opti-
mization problem is
.. R,I M,D M,C M,D D,C
maximize GW](VPT)(CF,TP,]?B ydy >4 -4B )

TpyM:D  D,C MC M,D D,C
PP Pp 44 9B 4B

M,D D,C
s. t. qp

- QB 9
D.C M,D
Pp =ZPp

M,D DC M,C M,D D,C>O
pB 7pB 7qA 7qB aQB - )

0<Tp<Sp, (55)
which is obtained by replacing the constrdint = 0 in (54) by0 < Tp < Sp.

Proposition 3.7. When the manufacturer does research and developrttentp-
timal value of the objectivé?W](V}f;Q of the optimization problem (54) modeling
parallel trade freedom under the first specification of theM®aglobal welfare
model is

,
[ (ya)? a?\  a® . (ya)? a?
mm{ TR TS iy —Or> gy
wD\° _ ) (P+1Da®> Cp 1 B\° .. |(ya)? a?
(emisn) = T =g (ewWi) i [ o < g
(v*+1)a? . (va)? a?
A : _ L
T Cr <0 iy —Cr<—g
(56)

whereas the corresponding optimal value of the objecﬂ\wfﬁgﬁ of the opti-
mization problem (55) is

(i) =5 -G =g (o). e
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When the manufacturer does no research and developmentptireal value of
(va) 1
GWypr 1S
(GW}VI}’Q) —0. (58)

Proof. We first consider the case of the optimization problem (54h)3mvthe man-

ufacturer does research and development. V\ﬁﬁz@n Cr > g, starting from
the feasible solution

(CFvTP7pB 7q_ﬁjc7q_By7D7Qg7c) - (CF70707,W17 CL,CL) ) (59)

which corresponds to the o€’r, 0, (¢,0), 0, (ya, 0,a,a)} in (50) and produces
the same values for the national welfares (which also mapdrtie sum of the na-
tional welfares, as already shown in the proof of Propasi@ia), it is not possible
to transfer part of the current national welfare from therdop A to the country
B. Indeed, a negative prige; " is not admissible, and, differently from the proof
of Proposition 3.7, one cannot incre@iec, which has to be equal tbdue to the
assumption of parallel trade banning. Then, since its s&axible solutions is

convex, (59) is an optimal solution of (54), which proves)@8 12" — ), > <.
When ’ 0o _ OF‘ < g, starting from the feasible solutlon (59), one can

transfer part of the current natlonal welfare from the coupi® to the country

A, by raising the prices"” andpy“ of the same amounkp = 150 4 Cr
allowing one to conclude as in the corresponding part of thefpof Proposition
3.6.

As a last case, Wheffi;;—)2 — Cp < —4;, the national welfare in the country
A is always negative, whereas the national welfare in the ttpuB is always
non-negative, so, starting from the feasible solution (68¢ can transfer all the
current positive national welfare from the counfByto the countryA, by raising
the pricepy;” andpp“ of the same amounhp = 2. In this case, the first

country obtains its maximum possible (negative) value ef iational welfare,

which is &7 ) — Cp.
For the optimization problem (54), the only difference witfspect to the
proof above is that, when the manufacturer does researclklaredopment and
— Cfp > 5, starting from the feasible solution (59), one can trangéet of
the current national welfare from the countByto the countryA, by raising the

transfer payment frori to % + % making the two national welfares equal
to the same valué% - =1 (GW,S?) .
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Finally, for the case in which the manufacturer does no rebeand devel-
opment, (58) follows trivially from the definition of the ment global welfare
function in Section 3. [ |

3.3. Optimization of the global welfare under the second i§pation of the
Rawls model
Again, we first consider the case in whittte manufacturer does research and
development, there is no transfer payment, drete is parallel trade freedom.
Then, by using the expression (20) for the global welfaf& /=" under the sec-
ond specification of the Rawls model, and introducing the rewstar of prices

mcCc DC M,D DC MC DC MD DJC R
p=(pPa sPa P PB s4a 4 4B 4B )be&destherowvectorof

quantitiesy = <qi\f’c, qve P, qg’c) already used in Subsection 3.2, the opti-
mization problem to be solved by the global planner is nownidated as
maximize GWI(DI;’H) (Cr,Tp,p,q)
Tp.pg T

M,D D,C D,C
S. t. g =494 +4q5

Tp—=0, (60)

which is a maximin optimization problem, likewise the opization problem (44).
Again, a related maximin optimization problem is

maximize GW](DI;’H) (Cr,Tp,p, q)

Tp,p,q
M.,D D,C D,C
S. t. qB = qA —+ qB 5
D,C M,D
pA 2 pB + t )
D,C M,D
pB Z pB 9
p,q =0,
0<Tp<Sp, (61)

which is obtained by replacing the constrdint = 0 in (60) by0 < Tp < Sp.
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Proposition 3.8. When the manufacturer does research and developmiet:

optimal value of the objective’W 5"") of the optimizatiorproblems (60) and
(61) modeling parallel trade freedom under the second spedificadif the Rawls
global welfare model is

(2
2_b lf ")/ > 3+ a2 5
(v +1Da* Cp 1 ( (B)\° . 20C
o -~ —— =_(GW ) f1 <1/3
(ewii") = 8 4 A\ T SRR e
2 2
and (va) —CFp L
2b - 2’
(v +1)a® Cp . (ya)? a’
wrije Yr P O L
ST 2 iy —Or<—3g

When the manufacturer does no research and developmentptiveal value of
(R,II) :
GWypr' is
(GW}&;?) ~0. (62)

Proof. We start considering the case in which the manufacturer eisesrch and
development (the following analysis is the same for botlbfgnms (60) and (61)).
By Proposition 3.3, the optimal value of the sum of all the fuses is equal to

(B) © (72—‘,-1)&2 . . . . .
(GWPT ) = ~—;——Cp, which is also achieved according to its proof. When
1 << \/3+29E and @2 _ ¢\ > —2 by choosing a suitable feasible vector
of pricesp, one can re-distribute the surpluses corresponding to anaptimal
solution equally among theentities, thus obtaining

(i) = awiy) =G e

Wheny > /3+252  instead, by choosing another suitable feasible vector of

a2 !
pricesp with p3;"” = pj = 0, one can achieve the valgg for the surplusSc,
of the consumers in the countfy (which is also its maximum value, as it can be
seen by observing thél,,, is bounded from above by the optimal value of the

objective of the optimization problem (29)) and re-digiti# the remaining sum
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and the consumers in the countty Hence, for such a case, one obtalns

2

(GW (R.1T) ) _ ;—b (64)

As a last case, Wheﬁ;)—)Z) — O < —2b, the surplus of the manufacturer is
always negative, whereas the surpluses of all the othetiesnéire always non-
negative, so, starting from the feasible solution (59), caue transfer all the cur-
rent positive surpluses of the other entities to the manufac by raising the
price py; " andpp© of the same amountp = 2. In this case, the manu-

facturer obtains its maximum possible (negative) valuehefgurplus, which is
(72+1)a2 C

2b N F. . .

Finally, for the case in which the manufacturer does no rebeand devel-
opment, (62) follows trivially from the definition of the ment global welfare

function in Section 3. [ |

As a last case, when the manufacturer does research andpiesslt, there is
no transfer payment, arghrallel trade is forbidden, one has to use the expression
(21) for the global welfare functioGW](\fffTI under the second specification of
the Rawls model, and solve the following optimization protvle

GWCF Tp (R, II)( M,C M,D D,C M,C _M,D D,C)

maximize P’ PR 544 4B 54B

T M, M,D D,C M,C M,D D,C
PPA PR PR Ay sdp sdp
M,D D,C
s. t. qB =4
M,D
pB >p )

M,C M,D D,C M,C M,D DC>O
Pa »Pp sPp 494 49 4p

Tp =0, (65)

which is also a maximin optimization problerAgain, a related maximin opti-
mization problem is

GWCF Tp, (RII)( M,C M,D D,C M,C M,D D,C)

maximize yPp P 495 »4p 4p

M,Cc M,D D,C M,C M,D D,C
Tp,p,’ P’ P’ 45 -4 4B

. M,D _ _D,C
s. t. qB =4

M,D
pB Zp ;

M, M,D D,C MC M,D D,C >0
A 7pB :PB 7qA 7(13 7‘13 = ’

0<Tp <Sp, (66)
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which is obtained by replacing the constrdint = 0 in (65) by0 < Tp < Sp.

Proposition 3.9. When the manufacturer does research and developrtienbp-

timal value of the objectivé?WNig of the optimization problem (65) modeling

parallel trade freedom under the second specification oRaels global welfare
model is

a2 1 (R,)\° .. (ya)? a?
o= 2 (67N 5 ‘CF>%
2 2 2
(R,11) (P+1)ae® Cr 1/ 05\ . |0a)® a’
<GWNPT > - 8b 11 (ewip) i TR 2b - (67)
(v*+1)a? . (ya)? a’
S —Cr <o if S~ O <~

Proof. We first consider the case of the optimization problem (65\)'-;mvthe man-
ufacturer does research and development. V\/fﬁgn —Cfp > 2b, starting
from an optimal solution of the optimization problem (54)hfah maximizes the
minimum of the two national welfares), for each country, ¢lhabal planner can
re-distribute the national welfare equally between the énwtties of the country,
by making suitable feasible choices for the priddence, taking into account the
first two cases of formula (56) one obtains the first two caddsrmula (67).
Finally, When”a —CF < _2b' one can proceed likewise in the corresponding
part of the proof of Proposition 3.7, hence proving also #e tase oformula
(67). [ |

4. Background: three game-theoretic models for parallel tradebanning/parallel
trade threat/parallel trade occurrence

In practice, the prices and quantities of the model preseimté&Section 2 in
general cannot be chosen realistically by a global planmerause - given the
demand functions - they depend on the interaction betweem#nufacturer and
the distributor. As already-mentioned in Section 1, two gaheoretic dynamic
noncooperative modeisere proposed in [7] to describe the interaction between
the manufacturer and the distributand another one was proposed earlier in [5].
Although the three models above refer to increasing levetsomplexity, their
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subgame-perfect Nash equilitidetermine prices and quantities at equilibrium
that are in general different from the ones determined byglbieal planner. In this
section, we shortly summarize such game-theoretic modélen, in Section 5,
we compute the corresponding value of the global welfaretfan at equilibrium,
for each of the three models of the global welfare functiogspnted in Section
3. Finally, in Section 5, by using the concept of price of ahgr we compute
the loss in efficiency in the optimization of the global wedfdunction, which is
incurred when moving from the optimal solution determingdh® global planner
to the prices and quantities at the “worst” subgame-peNeasth equilibrium.

The following is a short summary of the results of the analgéithe noncoop-
erative game-theoretic models proposedbjhand[7] for the interaction among
the manufacturer and the distributd@ihe models are ordered according to an in-
creasing level of complexity of the interaction betweenrtrenufacturer and the
distributor.

(i) First noncooperative game-theoretic model: parallel trade is fibidden,
i.e.,qf’c = 0. The interaction of the players (here, the manufacturettia@d
distributor) is described by a dynamic noncooperative gaitteperfect and
complete information. In the first stage, the manufactuees the wholesale
pricepy; " for the distributor. Then, in the second stage, the distoibsets
the retail pricq@c for the consumers in the countB. No transfer payment
is paid by the distributor to the manufactur€he game is solved in [12] by
backward induction (the final result is also reported in,[phoviding the

following prices and quantities at a subgame-perfect Nasiflibrium:

4We recall that a subgame-perfect Nash equilibrium of a dyaamncooperative game is an
equilibrium such that its players’ strategies constitutdaesh equilibrium for every subgame of
the original dynamic noncooperative game. Not all Nashléxia are also subgame-perfect Nash
equilibria. The difference between a generic Nash equilibrand a subgame-perfect Nash equi-
librium is that the latter requires an additional assummptighich is called sequential rationality
of the players. We refer, e.g., to [11] for more details onghevious definitions.
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M,C (s.p-Nash, NPT) ~q
<pA % ’
)(s p.Nash,NPT)

p e (not uniquely determined, but irrelevant as

p.C\ (s:p-Nash,NPT)
(43) =0,
(s.p.Nash,NPT) a

T
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(i) Secondnoncooperative game-theoretic model: parallel trade is panit-
ted, but no parallel trade occurs at equilibrium (parallel trade threat).
Again, the interaction of the players (the manufacturertaedlistributor) is
described by a dynamic noncooperative game with perfectanglete in-
formation. In the first stage, the manufacturer sets the egabé pricq)g’D
for the distributor. Then, in the second stage, the distoibsets the retail
pricepy’ D€ for the consumers in the counts. In the third stage the manu-
facturer and the distributor choose simultaneously theegyi’,” andp
at which they sell the product to the consumers in the coustrgccording
to a Bertrand duopoly model. No transfer payment is paid bylisigibutor
to the manufacturer. Again, the game is solved in [12] by beck induc-
tion. The result of the equilibrium analysis (also repoitef¥]) depends on
the value of the per-unit parallel trade cosMore precisely, two thresholds
for t are defined in [7]:

@ < — §) if v> = 0
o= 4w\ 2 T=39 (69)
0 otherwise ,
a
= -1 7
th 2b( ) (70)

Of courset; < t,. Hence, one distinguishes among low valuestf@r <
t < t), intermediate values for (t;, < ¢t < t3), and high values fot
(t > t). Notice that the first case is meaningful only when- 0. Likewise
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in [7], in the following we use the symbols i, andh to denote the three
respective cases. For eaglthe following prices and quantities are obtained
at a subgame-perfect Nash equilibriginere, we use the superscrigtt17”

to recall that the present game-theoretic model refersralpbtrade threat)

M,C (s.p.Nash,l,PTT) a t
(PA ) Z&(27+1)+§,

:(not uniquely determined, but irrelevant as

:0)7

:(not uniquely determined, but irrelevant as

D.C (s.p.Nash,l,PTT)
(5
p.c\ (3:p-Nash,l,PTT)
(43
Pp

( M D) (s.p.Nash,l,PTT)

M,D (s.p.Nash,l,PTT)
9B = O) )

. D.C (s.p.Nash,l,PTT)
ifo<t<ty: ( B ) =(not uniquely determined, but irrelevant as
D.C (s.p.Nash,l,PTT)
(45°°) =0,
Adc)(spNashlPTT 94 717@
(4 R
D,C (s.p.Nash,l,PTT)
(439 =0,
M,D (s.p.Nash,l,PTT)
(a5") =0,
D,C (s.p.Nash,l PTT)
(25°) =0,
(71)
AI’C)(sApANash,i,PTT) _a 9 t
=22+ )+ 2,
(pA 6b( Y ) 3
(s.p.Nash,:,PTT)
(pf’c> ° :(not uniquely determined, but irrelevant as
D.c\ (s:p-Nash,i, PT'T)
(29 =0).
M.D (s.p.Nash,7, PTT) a 2t
? 2v+1 s
(v5"") TNy
(s.p.Nash,i, PTT) a t
ift<t<tn:d (ng©) 2y +7)— =
R I EE AN
NI’C)(S.pANash,i,PTT) 72 a1y
(qA s —-bD-7,
D.C (s.p.Nash,i, PTT)
(429 =0,
M.D (s.p.Nash,i, PTT) a bt
? 5—2v)+ —
(qB > 12( )
D.c\ (s-p-Nash,i, PTT) a bt
? 5—2v)+ —
(a5) Rty
(72)
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p]u o\ (s-p-Nash,h, PTT) E
A 2%’

N

)(5 .p.Nash,h,PTT)

/~

(not uniquely determined, but irrelevant as

:0)7

pA
D.C (s.p.Nash,h,PTT)
(43

(s.p.Nash,h,PTT) a

c (s.p.Nash,h PTT)

M,D
Ps TN
(s.p.Nash,h,PTT) 3
>t (pg C ) 4‘; (73)
M,C (s.p.Nash,h,PTT) r\/a
(qA ) 2 )
D,C (s.p.Nash,h,PTT)
(42) »
( M, D)(s .p.Nash,h PTT)
dp ,

»Ma ux\ﬁ

—~
Q
Sl

One can notice that, for each of these subgame-perfect Naslibea, par-
allel trade actually does not occur. However, paralleléaritdedom has an
influence on the equilibrium behavior of the players (as @resee by com-
paring such equilibria with the ones obtained when par#iéele is forbid-
den; see the previous game-theoretic model).

Third noncooperative game-theoretic model: parallel tradeis permit-
ted, and it occurs at equilibrium. Also in this case, the interaction of the
players (the manufacturer and the distributor) is desdrdyea dynamic non-
cooperative game with perfect and complete informatiorthénfirst stage,
the manufacturer sets the wholesale p;tiﬁ%D for the distributor, together
with a transfer payment» > 0, chosen inside the set of transfer payments
that guarantee a non-negative surplus for the distribsta( a subset is de-
termined in later stages). Then, in the second stage, thefacarer and
the distributor decide simultaneously the quantid]i%§ andqfvc to be sold,
respectively, to the consumers in the courdry At the same time, the dis-
tributor also decides the quanti@gc to be sold to the consumers in the
country B. The pricep’"® = pV'® is determined by a Cournot duopoly
model, whereas the priqé,?’c is determined between by equating the of-
fer from the distributor and the demand of the consumbersencountry
B. Also this game is solved in [5] by backward induction. Agéime re-
sult of the equilibrium analysis depends on the value of greymit parallel
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trade cost. In the following, we repoftfrom [5] the prices and quantities
that are obtained at a subgame-perfect Nash equilibriurwiach parallel
trade actually occurs (here, we use the superscidt©” to recall that the
present game-theoretic model refers to the parallel tradercence at equi-
librium). The following expressions hold under the assuamsl < v < 2
andbt < 212

4. ¢\ (s:p-Nash,PTO) _ 5ya+ bt
13b

N
=

p

)

( D,C) (s.p.Nash,PTO) . 5'ya -+ Tbt
Pa T
( ]\/I,D) (s.p.Nash,PTO) . Q'ya -+ 8bt
Ps BT
(prc) (s.p.Nash,PTO) :i ya + 4bt
B 2b 136 (74)
( ]M,C) (s.p.Nash,PTO) 757[1 -+ Tbt
14 BT
( D,C) (s.p-Nash,PT'O) _ 3va— 14bt
qA - 13 ’
M,D (s.p.Nash,PTO) _a 270, — 18bt
(qB ) 2t T
( D,C) (s.p.Nash,PTO) _a _"a + 4bt
5 2 13
The associated transfer payment is
2 2
(TP)(s.p.Nash,PTO) _ (9")/& B 42bt) + ((13 — 2’)/)@ — 8bt) (75)

1521b 676b

Remark 4.1. All the equilibria above refer to the case in which the mantifeer
decides to do research and developments, hence, it inautetti fixed cost’.
Moreover, one can see straightforwardly that all such durial are associated
with non-negative surpluses of the distributor and of thesconers in the two
countries, whereas the surplus of the manufacturer can gatine if the total
fixed costCr is too large (but it is always non-negative 0§ = 0). However,
due to their subgame-perfectness, the equilibria abovegehanly slightly if one
adds to the previous game-theoretic models the constrahthe surplus of the
manufacturer has to be non-negative, making the manuéctiecide not to do

5As already mentioned, the model presented in [5] refersdéahvicesy = 1 andb = 1. For
uniformity of notation with the previous models, we havedane all its computations removing
the two assumptiong = 1 andb = 1, obtaining the results shown in formula (74).
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research and development in case its surplus is negative vésearch and de-
velopment are done. By adding such a constraint, indeed, lmtagns exactly the

same expressions of the prices and quantities at equitibwben the associated
surplus of the manufacturer is non-negative, whereas alljtrantities and sur-
pluses becomé otherwise. Finally, with these modifications the valueshsf t
global welfare associated with such equilibria are always-negative, for each
model of the global welfare function. [ |

5. An application of the price of anarchy to parallel trade freedom/banning

In this section, for each of the global welfare models com®d in Section
3 and each of théhreenoncooperative games described in Section 4, we apply
an adaptation to our context of the concept of price of anafidm [9], in order
to compute the loss in efficiency in the optimization of thelgll welfare func-
tion, which is incurred when moving from the optimal solutidetermined by the
global planner to the prices and quantities at the “worsbgsume-perfect Nash
equilibrium of the game.

The following definition formalizes our adaptation of thdidiion of price of
anarchy (PoA) from [9] to théhreenoncooperative games abowr uniformity
of notation, in the following we consider the case in whick tflobal planner
can optimize also the transfer price (see, e.g., the opditioiz problems (45),
(55), (66), and (61)). In the following definitions, in orderhave non-negative
values for the global welfare function in all ratios, we assuthat both the global
planner and the manufacturer optimize their strategiesrdoty to Remarks 3.2
and 4.1, respectively, i.e., taking into account the pdggimot to do research
and development.

Definition 5.1. For each of the global welfare models considered in Section 3
and each of théhreedynamic noncooperative games described in Section 4 mod-
eling parallel tradebanning/freedomthe price of anarchy (PoA) is defined as
the ratio between the optimal value of the global welfare otgdiby the hypo-
thetical global planner of Section 3 under the saocoaditionsof parallel trade
banning/freedom and the assumption that the global plamaar optimize also

the transfer priceand the value of the global welfare associated with the “worst”
subgame-perfect Nash equilibrium of the game (i.e., the ssecated with the
smallest value of the global welfare).
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Remark 5.2. Definition 5.1 differs from the one given in [9] for genericmo
cooperative games for the two following reasons, which aeded to adapt the
original definition of price of anarchy to our context.

() In Definition 5.1, the numerator refers to the global plan whereas the
denominator refers to the worst equilibrium, whereas [Hglthe opposite
in its definition. This change in the definition is due to thetfinat here we
are considering the maximization of the global welfare, nehs [9] refers
to a cost minimization problem. With this modification, ort@ains in the
present context a value of the price of anarchy that is alfvggesater than
or equal tol, likewise in the definition given in [9] for cost minimizaho
problems.

(i) In our context, we consider subgame-perfect Nash éaial instead than
simply Nash equilibria. Indeedll the equilibria reported in Section 4 are
subgame-perfect Nash equilibria. [ |

The importance of the concept of price of anarchy (in bothriddin 5.1 and
its original version stated in [9]) derives from the obséiom that it allows one
to compare different noncooperative game-theoretic féaitians, detecting when
a change in the rules of the game (due, e.g., to the possitdevémtion of a
policymaker) is needed to have a much more efficient (waseequilibrium.

In the following, we also introduce a “normalized” price afaachy, to better
compare the equilibria of the two games for which paralletiér is, respectively,
permitted/forbidden.

Definition 5.3. For each of the global welfare models considered in Sectiomd3 a
each of thehreedynamic noncooperative games described in Section 4 nmgdeli
parallel trade banning/freedomthe normalized price of anarchyPp A, o..) IS
defined as the ratio between the maximum of the optimal vafubkse global wel-
fare obtained by the hypothetical global planner of SecBamder each of the two
conditions of parallel traddanning/freedom and the assumption that the global
planner can optimize also the transfer pri@nd the value of the global welfare
associated with the “worst” subgame-perfect Nash equilibriofthe game.

SWhen the ratio in the definition of the price of anarchy (or nalimed price of anarchy, see
Definition 5.3) has the indeterminate for%n by convention we assign to it the vallueas the
numerator and the denominator are equal.
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Remark 5.4. Since the optimization problems solved by the global plamieen
parallel trade is forbidden are more constrained than tles éor which parallel
trade is permitted, the maximum in Definition 5.3 is alwaykiaeed in the situ-
ation in which there is parallel trade freedom. 8w two definitions of price of
anarchy and normalized price of anarcmwtually coincide for thgamesmnodel-
ing parallel trade freedom. However, we have stddedinition 5.3without any
explicit reference to this fact, in order to obtain a defomtithat is more easily
generalizable to other games. [ |

Remark 5.5. As it will be shown in the next subsections, for each fixed cloi
of the global welfare model and of one th@eenoncooperative games, all the
subgame-perfect Nash equilibria have the same value otfabalgvelfare (which
depends only on, b, the heterogeneity parametgrand the per-unit parallel trade
costt), so there is no need for searching for the “worst” equilibrj as all such
equilibria are equivalent in efficiency. [ |

In the following, we express the price of anarchy/normalipece of anarchy
for the various models of the global welfare functions andaomperative games
considered in the paper. In order to simplify the presematall the expressions
of the price of anarchy/normalized price of anarchy comdiim the following
Propositions 5.6, 5.8, and 5.10, refer to the c&ge= 0, for which both the
global planner and the manufacturer decide to do reseactdarelopment, and
for which both the numerator and the denominator in the defims of the price
of anarchy/normalized price of anarchy have simplified frnThe extension
to the case’r > 0 can be obtained straightforwardly, using the more general
expressions for the numerator and denominator presenteedtons 3 and 4.

5.1. Evaluation of the prices of anarchy under the Benthawvbalwelfare model

The following proposition provides expressions for thegesinormalized prices
of anarchy associated with the Bentham global welfare mautizethreegames
considered in Section &yhenCr = 0.

Proposition 5.6. (i) For the case of the Bentham global welfare model and the
game modeling parallel trade banning, the price of anarcbincides with the
normalized price of anarchy, and has the following expresgwo C'r = 0:

(B) (B) e 16(2 + 1)
PoAypr(v) =P OANPT,norm. (v) = = =

- - . (76
2129247 129247 (70)
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(i) For the case of the Bentham global welfare model and theng@anodeling
parallel trade threat, the price of anarchy coincides witle thormalized price of
anarchy, and has the following expression Cr = 0:

(v*+1)a?
2b fo<t<t
2 1 5 1 = 1y
255 (3272 — 4y — 1) — 15 (bt + at + 2vat)
(*+1)a?
B B T .
POAE’T?T(’%t) = POA(P’IET,norm.(’Y’t) = a2 5 2 1 B if tl S t S thv
sagp (12472 — 44y + 91) — 5= (4bt? + 2vat — 5at)
2 2
e 16(y* + 1) £t
= -
AT R L
(77)

(iif) For the case of the Bentham global welfare model and theng modeling
parallel trade occurrence, the price of anarchy coincideshwthe normalized
price of anarchy, and has the following expression gr = 0, 1 < v < 2,

3va.
and0 <t < {5

(B) (B) s
— 2b
POAPTO ('Y’ t) - POAPTO,nornL (’Y, t)

1 (va)2— & (va) (bt)+ 23 (b1)2+ B a® — g (va)a— 2 bt
b

(72 +1)a®
13(70)2 = 33 () (bt) + T (01)2 + Ja? — g5 (va)a — fga(bt)
(78)

Proof. (i) As reported in [7] (see also [12] for a derivation), foetBentham model
and the game modeling parallel trade banning, the value eofjtbbal welfare
associated with the subgame-perfect Nash equilibriumigealvby formula (68)
has the following expressiérior C- = 0:

CL2

GWE () = (1292 4+7). (79)
Then, (77) is derived by applying (79), Propositions 3.3 a@rig and Definitions
5.1and 5.3.
(i) As reported in [7] (see also [12] for a derivation), fdret Bentham global
welfare model and the game modeling parallel trdwleat the values of the global
welfare associated with the subgame-perfect Nash eqaifibovided by formulas
(71), (72), and (73) have the following expressibfts O = 0:

’Such an expression can also be derived by using formulasa(ir{68).
8Such expressions can also be derived by using formulas(@B),(72), and (73).
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2

s as 1
GW](D?7 .p.N h7l7PTT)(’Y,t) — ;Qb(3272 o 47 o 1) o Tg(th +at + 2’yat),
2
s ash,i 1
GW B pNash b PIT) (4 %(12472 — 44y +91) — %(4&2 + 2vat — 5at)
2
B,s.p.Nash,h,PTT a
GWy™" 1) = 1297+ 7). (80)

Then, (77) is derived by applying (80), Proposition 3.3, Bigfins 5.1 and
5.3, and Remark 5.4.
(iif) As reported in [5], for the Bentham global welfare moa@eld the game mod-
eling parallel trade occurrence, the value of the globafavelassociated with the
subgame-perfect Nash equilibrium provided by formula (7d$ the following

expressiofifor Cr = 0,1 < v < 2,and0 < ¢ < 22

2
2va-+8bt
(“/a + Zyadsbt | bt) Dva + 8bt ya — 221 _ oy
9b 13b 3

GW}()?,SAPJ\IAS}],PTO) (77 t)

(7‘1 — pZyatibt _ 2bt)2 02— (2'ya1+3—8bt)2
+ 9b * 4b
5 bt )2 bt \ 2
(1o sgt)? (5 s
+ 2b + 2b

B2 - Sa)e) + B0 + 26 - E(aa— Zalby)

- b

(81)

Then, (78) is derived by applying (81), Proposition 3.3, Biébns 5.1 and
5.3, and Remark 5.4. [ |

Remark 5.7. By using formula (76), one can also see tlﬁa)tASf}T(y) Is a de-
creasing function of; € (1, +o0), lim+PoA§fl)3T(7) = 32, and
y—1

4
lim POAE\]?}T(W) =3 (82)

y—>+00

9Such an expression can also be derived by using formulas(ib]74).
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Similarly, by exploiting formula (77), one can see that

32

2 ift=0,
lim PoAR(v,1) = {59 (83)
L o ift>0,

(since, fory sufficiently close td, one gets, = 0, andt;, ~ 0), and that, for each

fixedt > 0, 0
lim PoAY) (y,t) = =. (84)

y—+oo 8

. .. 3 a
Finally, by exploiting formula (78), one can see that,§ox ¢ < 77,

1

lim PoA'%) (7,t) = : (85)

=1+ rro 17094 - % (%) + % (%)2

and
PoAP) (2,1) = ! (86)
pro\4t) = b bt) 2
EREIORE 0

[ |

5.2. Evaluation of the prices of anarchy under the first sfieation of the Rawls
global welfare model

The following proposition provides expressions for thegesinormalized prices
of anarchy associated with the first specification of the Rayldbal welfare
model and theéhreegames considered in SectionwhenCr = 0.

Proposition 5.8. (i) For the case of the first specification of the Rawls global
welfare model and the game modeling parallel trade bannimgptice of anarchy
has the following expressidor Cr = 0:

2
& 16
PoAipn(1) = o = (87)
32b

whereas the normalized price of anarchy is

(*+1)a? 2
8(v*+1
PoAlH) () = —— = 20T F D, (58)

32b
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(ii) For the case of the first specification of the Rawls globalfare model and
the game modeling parallel tradé@reat, the price of anarchy coincides with the
normalized price of anarchy, and has the following expres&wo C'r = 0:

-+ o0 if0<t<t,
(v?+1)a?
1 :
R,I R . if 4 <t <1y,
PoART(7,8) = POART o (1) = GW PN ()
(?+1)a? 2
~—m—  8(y*+1) )
é = 3 if t >t,,
325
(89)

whereGW ULl s PN PT) o, 4y s the value of the first specification of the Rawls

global welfare model computed when using the prices and diesssociated
with the subgame-perfect Nash equilibrium ¢72)

(iif) For the case of the first specification of the Rawls glowalfare model and
the game modeling parallel trade occurrence, the price @rahny coincides with
the normalized price of anarchy, and has the following exgpasfor Cr = 0,

3va.
1<y<2and0 <t < {5

(v?+1)a? 2 2
R, R, +1)a
POAEDTO) (’Y’ t) = POA(PTIO)JIOI‘H]. (’77 t) = i = (’Y ) : (90)

2
(5-"5") o <% _ M)z

20 13

Proof. (i) For the first specification of the Rawls global welfare mioaled the
game modeling parallel trade banning, the value of the ¢lk#dare associated
with the subgame-perfect Nash equilibrium provided by falar(68) has the fol-

105ee formula (93) in the proof for its expression.
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lowing expressiotior C'r = 0, which can be derived by using also formula (19):

24 b 2 2%

ﬁ 2
GW](\[I%;s.p.Nash,NPT) () = min{ aa  naja (%)

Caa aa (§)

24 b4 Qb}

. [ (392 + 1D)a® 3a®
= min¢-———/— —
8b 32b

3a?

= oo (91)
where the mimimum is clearly achieved in correspondencéefcountry 5.
Then, (87) and (88) are derived by applying (91), Propas#i8.6 and 3.7, and
Definitions 5.1 and 5.3.
(ii) For the first specification of the Rawls global welfare rebdnd the game
modeling parallel tradthreat the values of the global welfare associated with the
subgame-perfect Nash equilibria provided by formulas,(723), and (73) have
the following expression®r C'r = 0, which can be derived by using also formula
(18):

a4y — 1) — )7
W) = n{ T (- - §) - B0

= 0, (92)
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s ash,? . 2t bt
w00 = mn{ (e -5) (-2 +5)

- 2% ) (93)
(R,I,s.p.Nash,h,PT) aa yaya (%)2
S o) = min G
_aa aa_(§)
264 b4 2b
(3v2 + 1)a? 3a?
= min ,—
8b 32b
3a?
= 39 94
32b° (94)

where all the minima above are achieved in correspondentieeafountry 512,
Then, (89) is derived by applying (92), (93), (94), Proposit3.6, Definitions 5.1
and 5.3, and Remark 5.4.

IFor the cases of formulas (92) and (94), the proof that thémarare achieved in corre-
spondence of the countr® is immediate; for the case of formula (93), this is proved lby o
serving that the national welfare of the countdyis greater than or equal to the surplus of
the consumers of the country obtained when the wholesale pripé‘”’c is equal to0, and
the national welfare of the country is smaller than or equal to the surplus of the consumers
of the country B obtained when the retail pricpﬁf’c is equal to0. Now, asy > 1 and
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(i) For the first specification of the Rawls global welfare deb and the game
modeling parallel trade threat, the value of the global arelfassociated with the
subgame-perfect Nash equilibrium provided by formula (743 the following
expression foCr = 0,1 < vy < 2,and0 < t < ‘%‘; which can be derived by
using also formula (18):

2
2va+8bt
(’ya + ng + bt) 2va + 8bt Ya — 272“"11"3:8“ — 2bt

(R,I,s.p.Nash,PT) _ .
GWerr 1) = mm{ 9 13b 3
2 2
(Ml _ 227(11458bt _ 2bt> a2 — (zyalgsbt)
* 9b + 4b
<’)/CL o 5'ya1§7bt ) 2
+—,
2b
a _ ~ya+4bt 2
2 13
2b
a ~ya+4bt 2
2 13

- 2 =7, (95)

where the minimum above is achieved in correspondence ofdbatry B, as
it can be shown by simple algebraic manipulations. Then) {©@lerived by
applying (95), Proposition 3.6, Definitions 5.1 and 5.3, Rainark 5.4. [ |

Remark 5.9. By using formula (87), one can see th%szE\’fI;IT)(fy) is a constant
function ofy € (1, +o00), SO hm+PoA§§;fT)(y) =1 and
y—1

lim PoAjpa(7) =

Y—+00

16
—. 96
3 (96)
Finally, by exploiting formula (88), one can see th%&Agf];IT)mrm_ (v) is an in-

creasing function ofy € (1, +00), Wli}IgPoAgf};%norm. (v) =%, and

lim PoARH o (7) = +00. (97)

y—+o0

, (s.p.Nash,:,PT) (s.p.Nash,i,PT) . .
(qf"c > (qg’c> , the first surplus is greater than or equal to the

second one, hence the minimum in formula (93) is achievedirespondence of the countB.
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Similarly, by exploiting formulas (89) and (93), one can et

B iy —o,
lim PoAYEY (v, 1) = 2 (98)
B! 16

? lf t > 0,

(since, fory sufficiently close td, one gets; = 0, andt;, ~ 0), and that, for each
fixedt > 0,
lim PoAYD (v, 1) = +00. (99)

Y—>+00

Moreover, for each fixed > 1,

8(v2+1) ‘

. R,1
Jim PoAps) (v.8) = = (100)
Finally, by using formula (90), one can see that,for ¢ < 212,
1
. (R,I) o
7£T+POAPT0(77t) B2tk (101)
(5 T3 )
and .
PoAR70(2,1) = 5 (102)
1 40+Y)
2 13
[ |

5.3. Evaluation of the prices of anarchy under the seconaifipation of the
Rawls global welfare model

Finally, the following proposition provides expressioasthe prices/normalized
prices of anarchy associated with the second specificatitve &awls global wel-
fare model and théhreegames considered in SectionwvthenCr = 0.

Proposition 5.10. (i) For the case of the second specification of the Rawls global
welfare model and the game modeling parallel trade bannimgprice of anarchy
has the following expressidor Cr = 0:

PoAYy(y) = 2 =, (103)
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whereas the normalized price of anarchy is

(v*4+1)a?
B a4 )

if1<~<v3,

if v> /3.

(104)

(ii) For the case of the second specification of the Rawls diale#fare model and
the game modeling parallel tradéreat the price of anarchy coincides with the

normalized price of anarchy, and has the following expresgwo C'r = 0:

R,II
POA;TT)(%t)
R,IT
= POA;TT,florm.(’y’t)

( (?+1)a?
8b

GW]&I%;I,S.p.Nash,i,PT) (77 t)

(*+1)a?
o =407+ 1)

ac
32b

a2

2b

R,I1,s.p.Nash,i, PT
GWI(DTT v )(% t)

R,I1,s.p.Nash,i, PT
GWI(DTT ’ )(’Y 1)

ifl<y<vV3and0<t<t,
if1<y<+V3andt>t,,

. 5

1f\/§<’y§§and0§t§th,

5
if\/§<7§§andt>th,

, 5

1f’y>§and0§t<tl,

)
if7>§andtl§t§th,

5
if7>§andt>th,

(105)

where GW UL TspNashiPT) o, 4 s the value of the second specification of the
Rawls global welfare model computed when using the prices aaditifjes asso-
ciated with the subgame-perfect Nash equilibrium {7.2)

12See formula (109) in the proof for its expression.
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(i) For the case of the second specification of the Rawlsa@lalelfare model and
the game modeling parallel trade occurrence, the price @afrany coincides with
the normalized price of anarchy, and has the following exgsfor Cr» = 0,
1<vy<2and0 <t < 3¢

PoART6 (7,1) = POARLE . (1:1) = +00. (106)

Proof. (i) For the second specification of the Rawls global welfarelehand the
game modeling parallel trade banning, the value of the glbHare associated
with the subgame-perfect Nash equilibrium provided by falar{68) has the fol-
lowing expressiotior C'» = 0, which can be derived by using also formula (21):

. _ 2792 +1)a?
GBI Ls.p Nash, NPT) _ yaya  aa (
NPT () = miny 5 T w1 8

3¢ ala _ a*
4 2b)4  16b’

a2

= 395 (207)
where the mimimum is clearly achieved in correspondencéetbnsumers in
the countryB. Then, (103) and (104) are derived by applying (107), Pribjoos
3.8 and 3.9, and Definitions 5.1 and 5.3.

(i) For the second specification of the Rawls global welfa@ei and the game
modeling parallel tradéhreat the values of the global welfare associated with the
subgame-perfect Nash equilibria provided by formulas,(723), and (73) have
the following expression®r C'» = 0, which can be derived by using also formula

(20):
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S as. . t bt
GW RN PTG i { (e +3) (Sar-n-5),

- o, (108)

(6b(2v+ 1+ ;)(gm—l)—%)

2
+7—ba(g(47—1) ) (2(47_22)_?),

bt
3
(e ) (L6 %)

oy (BE-mes)
+Z(12(5727)+§t) - = } (109)

2 2 ' 264 8b ’
3a _a a,i
4 2b 16b°

GW(R,II,s.p.Nash,h,PTT)(’Y fH = min{’yaﬁ aa  (29%+1)a?
PT ’ -

= : (110)



where the minima in (108) and (110) are achieved in corredpoce of the con-
sumers in the countr®3. Then, (105) is derived by applying (108), (109), (110),
Proposition 3.8, Definitions 5.1 and 5.3, and Remark 5.4.

(iif) For the second specification of the Rawls global welfar@del and the game
modeling parallel trade occurrence, the value of the gloledfiare associated with
the subgame-perfect Nash equilibrium provided by formédg bas the following
expression foCr = 0,1 < v < 2,and0 <t < %‘g which can be derived by
using also formula (20):

2’yu+8bt 2 8b
(R,I1,5.p.Nash, PTO) _ . (’Ya + + bt) 2va + 8bt ya — 2 Wag - —2bt
Wer () = min 9 13b 3

(’YCL 22’~/a+8bt th)Q (l2 _ (2'ya+8bt>2

13

9b + 4b

2b
'ya+4bt)

+

0,
(’YG _ 5'ya+7bt)
(5 - 2)

2b
= 0. (111)

where the minimum above is achieved in correspondence aliitebutor (due
to the presence of the transfer payment(75) at equilibridingn, (106) is derived
by applying (111), Proposition 3.8, Definitions 5.1 and 2u3] Remark 5.4. B

Remark 5.11. By using formula (103), one can see tHat A/ (v) is a con-
stant function ofy € (1, +o00), so hm+PoA§fPITI (v) =8, and
y—1

lim PoAJ\?PI;,{) (v) =8. (112)

Y—+0oo

Finally, by exploiting formula (104), one can see ttatA\;. .. (7) is a non-

13An in-depth investigation of where the minimum is achievedarmula (109) by varying its
parameters is beyond the scope of the work. However, for frabtbs of the parameters, this can
be simply determined by comparing the four expressions08).1
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decreasing function of € (1, +oc0), lim+PoA§f£) (v) =8, and

1 ,norm.

lim PoANE o, (7) = 16. (113)

y—>+00

Similarly, by exploiting formulas (105) and (109), one cae s$hat
8 ift=0
lim PoAYLD = ’ 114
VE{L 0Aprr’ (7:1) 8 ift>0. (114)

(since, fory sufficiently close td, one gets; = 0, andt,, ~ 0), and that, for each
fixedt > 0,
lim POAEDJELITI) (v,t) = +00. (115)

y—+o00

Moreover, for each fixed > 1,

lim POASD@#) (7,t) =

42 4+1) if1l<vy<V3,
i {('y ) ifl<y< (116)

16 if7>\/§,

Finally, by using formula (106), one can see that(fef ¢ < ‘%Z PoAgf;IO]) (7,t) =

+o0 for everyy € (1, 2]. [ |

5.4. A summary of the obtained results

Table 1 summarizes the results obtained about the priceaotyynormalized
price of anarchy for the noncooperative games and globdaveemodels consid-
ered in the paperLimiting the comparison to the cases of parallel trade ban-
ning/parallel trade threat, which - differently from theseaof parallel trade oc-
currence - do not impose restrictions 9nan inspection ot Table 1 shows the
following:

(i) for the Bentham global welfare model, using similar argunts as the ones
used in the proofs of [7, Propositions 3-5], one can prov¢, tleet some
values ofy andt, the price of anarchy when parallel trade is forbidden is
greater than the price of anarchy when there is paralletttaeéat however,
there exist also some valuespéndt for which the opposite holds (see also
the plots in Figures 2 and 3);
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(ii) for the first specification of the Rawls global welfare nebdnd0 < t < ¢;
ort > ty, the price of anarchy when parallel trade is forbidden isagisv
smaller than the price of anarchy when there is parallektthceat since
13—6 < w < +o00. As confirmed by numerical results (see also the plots
in Figures 2 and 3), this is still true fay < ¢ < t,. However, when the
normalized price of anarchy is considered, the two casesquivalent for
t>ty;

(iii) for the second specification of the Rawls global welfanedel and(y >
g, 0<t< tl) ort > t;, the price of anarchy when parallel trade is forbidden
is always smaller than the price of anarchy when there idlpati@adethreat
since8 < 16 < 4(y* + 1) < +oo. As confirmed by numerical results (see
also the plots in Figures 2 and 3), this is still true foK ¢ < t,,. However,
also for this model, when the normalized price of anarchyisaered, the
two cases are equivalent for- t,,.

Figures 2 and 3 show the behavior of the price of anarchy (ametibn of
the per-unit parallel trade cogtfor the noncooperative games and global welfare
models examined in the paper, for two choices of the set @frpaters:, b, and-.

A MATLAB 7.7.0 implementation has been used to generatewlogfigures.The
two figures refer only to the cases of the games modeling Ipatedde banning
and parallel trade threat, respectively, since 4 > 2 has been chosen to generate
the plots in the first figure, whereas the condition< :%Z holds only for a small
range of values fot in the second figure.n Figure 2(a), which refers to the
Bentham global welfare model, the price of anarchy when treparallel trade
threatis always smaller than or equal to the price of anarchy wheallehtrade

is forbidden. However, both prices of anarchy are closg, iadicating that the
corresponding subgame-perfect Nash equilibria are gtfiteesmt, and no change
of rules of the games (due, e.g., to the possible intervertfa policymaker) is
really needed to improve their efficiency significantly. Andar situation occurs
in Figure 3(a), which also shows that, still for the Benthawbgl welfare model
but for a different choice of, there is an interval of values for the per-unit parallel
trade cost for which the price of anarchy when there is parallel trdueatis
smaller than the price of anarchy when parallel trade isidioidn, and another
interval of values for which the opposite occurs. Diffefgritom the case of the
Bentham model, Figures 2(b) and 2(c), which refer to the fipstcHication of
the Rawls global welfare model, provide extremely large @alfor the prices of
anarchy when there is parallel tratteeat revealing the neetbr changing the
rules of the game if one is interested to obtain efficientldapa. In particular, in
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Figure 2(b), for sufficiently small values of(i.e., for0 < t < t;), such a price of
anarchy is even infinite, according to formula (89). Thiswssasince in such cases
the marketB is not served at equilibrium, as shown by formula (71). ladtesuch
a behavior is not observed in Figure 3(b), as the correspgritreshold, is equal
to 0, due to the different choice of the parameteAs anticipated, Figures 2(b,c)
and 3(b) also show that, for the first specification of the Ramdslel, the price of
anarchy when there is parallel tratteeatis always greater than or equal to the
price of anarchy when parallel trade is forbidden, and thetguality holds when
one considers instead the normalized price of anarchy; andufficiently large.
Finally, similar comments can be made for Figures 2(d) aedl &0d Figure 3(c),
which refer to the second specification of the Rawls globafarelmodel.

Concluding, Table 1 and the numerical results in Figures 23asdow that
the results of the comparison in terms of the price of analb®tyeen thenon-
cooperative games examined in the pajmeodeling, respectivelyparallel trade
banning/parallel trade threat/parallel trade occurrgnaee sensitive to the val-
ues of the per-unit parallel trade cost and of the relativekatasize of the two
countries, and to the choice of the global welfare function.

6. Discussion

The price of anarchy is a useful tool to measure the efficiesfcgquilib-
rium solutions to noncooperative games. Although origynptoposed in [8] for
the case of Nash equilibria, it can be extended to otherisalapbncepts (e.g.,
subgame-perfect Nash equilibria). In practice, when theepof anarchy for a
specific noncooperative game is “large”, this means thatules of the game
should be changed, in order to obtain much more efficientlibgal Instead,
when it is a “small”, no change of rules by a policymaker isllyeaeeded to
improve the efficiency significantly.

In the noncooperative game-theoretic models of paraliddlbanning/freedom
examined in this paper, the price of anarchy measures tleeb@tween the op-
timal value of the global welfare and its value obtained irrespondence of the
“worst” equilibrium. In the paper we have obtained closedxf expressions for
the price of anarchy for two noncooperative games propasé§d| ito model the
interaction between a manufacturer and a distributor pbsgivolved in parallel
trade of pharmaceuticalsnd for a related model proposed in.[5Threesitu-
ations have been consideretie case when parallel trade is forbidden, the case
when there is parallel trade threat but parallel trade doeactually occur at equi-
librium, and the case of actual parallel trade occurrenagatlibrium Finally,
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First game

parallel trade banning (y > 1, Cr = 0)

Bentham m. without normalization:
16(v241)
127247
with normalization:
16(y%+1)
124247
Rawls m. without normalization:
. 3o
(I'spec.) with normalization:
8(y2+1)
3
Rawls m. without normalization:
8
(Il spec.) with normalization:
4(v2 +1) ifl<y<+v3
16 if v>+/3
Second game parallel trade threat (v > 1, Cr = 0)
Bentham m. with/without normalization:
<72+b1>a2
S ifo<t<t
42 (3292 —dy—1)— & (bt2+at+2yat) - !
(% +1)a? )
2 - b if t; <t <tp
2‘;;W(12472744—y+91)27%(4bt2+2'ya1575at)
16(y“+1) .
o747 ift >ty
Rawls m. 400 ifo<t<t
(+24+1)a?
- .
(I'spec.) W@ TepNashn PTT) (5 ift, <t<tp
8(7v2+1 .
S0 itt >t
(% +1)a?
8b i
Rawls m. Gw B TT s 5 Nash, L PTT) if1<y<+v3ando <t <t
(I spec.) 4y +1) if 1 <~ <+v3andt>t,
2
a
—2k if V3<~y<3ando<t<ty,
GWI(DI;.—',II,E.p.Ndsh,t,PTT)(,Y"t) > 35 i ST
16 if V3 <y <3andt>t,
+00 ify>2ando<t<y
a2
a? . s
GW;I;.U.S.p.I\?:sh.i,PTT)(%t) if v > 2 andt; <t <t
16 if v > 2 andt > ¢,
Third game parallel trade occurrence(l < v <2,0<t < ‘T’TZ, Crp =0)
Bentham m (Pf1)a?
) %(va)zf%(wa)<bt>+§%ébt>2+2%a2fﬁwa)af%a(bt)
Rawls m. %
2(% _ ’YQT;M )
(I'spec.)
Rawls m. 0
(Il spec.)

Table 1: Expressions of the price of anarchy obtained forrnibecooperative

games and global welfare models examined in the paper.
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Figure 2: Plots of the prices of anarchy (as functions of #eymit parallel trade
costt) for some ofthe noncooperative games aalll the global welfare models
examined in the paper, far= 2, b = 1.5, andy = 4.
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Figure 3: Plots of the prices of anarchy (as functions of #eymit parallel trade
costt) for some ofthe noncooperative games aalll the global welfare models
examined in the paper, far= 2, b = 1.5, andy = 1.6.
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we have compared the expressions of the price of anarchinedttborsome of the
noncooperative games aatl the global welfare models examined in the paper.
The results of the comparison are sensitive to the valueseopér-unit parallel
trade cost and of the relative market size of the two cousitead to the choice of
the global welfare functionAlthough the prices of anarchy for the three games
have been evaluated in Section 5 under the simplifying aggamof a zero total
fixed cost of production (in order to obtain closed-form egsions), the results
of the analysis in Section 3 could be used, in principle, t@lwte such prices
of anarchy numerically, for the case of a non-zero total fizesk of production.
Up to the authors’ knowledge, the application of the concémtrice of anarchy
to noncooperative games modeling parallel trade of phagotaals is novel. In
principle, the evaluation of the price of anarchy and of @smalized version may
be extended to other choices of the global welfare funcfitoreover, as another
possible extension, the price of anarchy could be evalugtedfor other nonco-
operative games modeling parallel trade, such as the amdigdtin [2, 4, 6] (e.g.,
othernoncooperative games for which parallel trade actuallyjuat equilib-
rium, when parallel trade is permitted). The results of sadomparison would
be useful to measure the efficiency of the proposed solytemto detect when
policymakers should change the rules of the game in orderci@ase the value
of the global welfare significantly.
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