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subgame-perfect Nash equilibrium; price of anarchy.

1. Introduction

In general, drug prices vary across countries. Differencesin pricing and re-
imbursement regulations may create arbitrage opportunities, which is known as
parallel trade. When parallel trade is allowed by policymakers, parallel traders
may buy drugs in a country where prices are lower, then re-sell them in a country
where prices are higher. As locally sourced and parallel traded drugs are produced
by the same manufacturer, they are exactly the same (apart from possibly different
packagings), which creates opportunities for potential parallel traders. According
to some policymakers, parallel trade should be permitted asa means to reduce
pharmaceutical prices in re-importing countries. However, manufacturers often
see parallel trade as a potential threat to their investments in research and devel-
opment. As a consequence, there is a strong debate about the opportunity or not
of permitting parallel trade [1, 2, 3].

Since parallel traders and manufacturers are different agents with their own
objectives, parallel trade and its consequences on the global welfare of the in-
volved countries have been investigated in the literature through various nonco-
operative game-theoretic models [2, 4, 5, 6, 7]. For instance, according to the
model developed in [5], restricting parallel trade is always advantageous for the
manufacturer, but it may either increase or decrease the global welfare of the two
countries. However, a different model is used in [2], showing that parallel trade
may even increase the profit of a pharmaceutical firm, depending on its bargain-
ing power and on the relative market size of the exporting country with respect
to the importing one. In [4], two dynamic noncooperative games are proposed to
investigate the equilibrium behavior of a manufacturer located in a country and a
distributor belonging to a second country, when parallel trade from the distribu-
tor is, respectively, permitted/forbidden. In the first case, it is shown therein that
parallel trade actually does not even occur at equilibrium (i.e., the quantity of re-
imported product from the parallel trader is0), but the threat of potential parallel
trade (or parallel trade freedom) influences the equilibrium behavior of both play-
ers, changing the equilibrium prices and quantities of the product sold by each
of them. In [6], parallel trade is examined through infinitely-repeated noncoop-
erative games with perfect and complete information, investigating the effect of
different policies enabling or not parallel trade on the associated subgame-perfect
Nash equilibria. Differently from [4], in this case parallel trade actually occurs

2



at equilibrium, when parallel trade is permitted.This also happens for the above-
mentioned model investigated in [5].Finally, for other noncooperative game-
theoretic models of parallel trade, we refer the interestedreader to the monograph
[7].

Within this noncooperative game-theoretic framework, in the paper we pro-
pose the use of the concept of price of anarchy1 [9], as a means to investigate the
efficiency of solutions to noncooperative game-theoretic models of parallel trade.
In the present context, the price of anarchy is the ratio between the optimal value
of the global welfare (i.e., the one obtained by a hypothetical global planner, by
solving a suitable optimization problem) and its value obtained in correspondence
of the “worst” equilibrium of the game. More specifically, inthe paper we evaluate
the price of anarchy for the two above-mentioned dynamic noncooperative games
proposed in [7] to model the interaction between a manufacturer and a distributor,
assuming, respectively,parallel trade banning for the distributor and parallel trade
threat from the distributor (but no occurrence of parallel trade at equilibrium), and
for the dynamic noncooperative game proposed in [5], for which there is an actual
occurrence of parallel trade at equilibrium.Hence, we evaluate the effect ofdif-
ferent levels ofparallel trade freedom on the price of anarchy. In order to compute
the latter, we consider three different models for the global welfare function of the
two countries, i.e., the Bentham model and two specificationsof the Rawls model.
Then, we compare the expressions of the price of anarchy obtained for the nonco-
operative games and global welfare models examined in the paper. The original
contributions of the paper are, for each of the three models of the global welfare
function, the evaluation of its optimal value in closed form, and the consequent
computation of the prices of anarchyfor the two noncooperative games proposed
in [7] and the one proposed in [5].

The paper is organized as follows. Section 2 summarizes the two-country
modelsfor the trade of pharmaceuticals presented in[5] and[7]. In Section 3, we
express in closed form the optimal value of the global welfare of the two countries
for the Bentham and Rawls models, when parallel trade is permitted/forbidden.
The two dynamic noncooperative games proposed in [7] to model parallel trade
banning/threatare shortly summarized in Section 4,together with the one pro-
posed in [5] to model the occurrence of parallel trade at equilibrium. Then, in
Section 5, we evaluate for the Bentham and Rawls models the prices of anar-

1Originally proposed in [8] under the name of “coordination ratio”; nowadays, the term “price
of anarchy” is more common [9].
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chy associated with the subgame-perfect Nash equilibria ofsuch games, and their
dependence on the relative market size of the two countries and on the per-unit
parallel trade cost. Finally, Section 6 discusses the obtained results and mentions
possible extensions of the methodology to other noncooperative game-theoretic
models of parallel trade investigated in the literature.

2. Background: a two-country model for the trade of pharmaceuticals

In this section, we summarize the models for the trade of pharmaceuticals con-
sidered in[5] and[7], involving two countries, characterized by different demand
functions of one product possibly subject to parallel trade. The model includes
both cases in which there is parallel trade freedom/banning. More precisely, the
following is assumed in the model. The first country (named “country A” in
the following) is the one in which a drug is fabricated by a manufacturer with a
marginal cost of production equal to0 (e.g., becausethe most relevant costs are
the ones of research and development). Since the drug can be also sold in a sec-
ond country (named “countryB” in the following), the countryA is the exporting
country, whereas the countryB is the importing country. However, when parallel
trade from the countryB to the countryA is permitted, the countryA is also the
re-importing country. The demand functions of the drug in the two countriesA
andB are modeled by the following linear functions, respectively:

qA = γa− bpA , (1)

qB = a− bpB , (2)

whereqA (respectively,qB) is the quantity of the drug that the consumers in the
countryA (respectively,B) are willing to buy at the pricepA (respectively,pB),
a, b > 0 are two constants (the same for both countries), andγ > 0 is another
constant, which describes the heterogeneity of the countriesA andB with respect
to the market size (indeed, in the limit case of very small prices, one getsqA ≃ γa

andqB ≃ a, so in that caseqA ≃ γqB, andγ measures the relative market size of
the countryA with respect to the countryB). After its production, the drug can
be

(i) sold by the manufacturer of the countryA to the consumers of the country
A in quantityqM,C

A at the wholesale pricepM,C
A ;

(ii) sold by the manufacturer of the countryA to the distributor of the countryB
in quantityqM,D

B at the wholesale pricepM,D
B ;
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(iii) sold by the distributor of the countryB to the consumers of the countryB
in quantityqD,C

B at the retail pricepD,C
B ;

(iv) (only when there is parallel trade freedom) sold by the distributor of the
countryB to the consumers of the countryA in quantityqD,C

A at the retail
pricepD,C

A . In doing this, the distributor incurs a fixed per-unit parallel trade
costt ≥ 0. When, instead, parallel trade is forbidden, one setsq

D,C
A = 0.

The model of trade considered in [5] differs from the one in [7] for the simpli-
fying assumptionsγ = 1 andb = 1 (which we do not make in the paper), and for
the additional presence of a transfer paymentTP ≥ 0 (franchise fee), which is paid
by the distributor to the manufacturer, and which we also include in the model.
Moreover, differently from [5] and [7], we also include in the model a total fixed
cost of productionCF ≥ 0, which can be interpreted as the cost of research and
development, and is used later in the paper by the manufacturer to decide whether
to do research and development (then, producing the drug), or not to do it (then,
producing nothing). Finally, while the total fixed cost of productionCF cannot be
modified, the transfer paymentTP can be set by to its maximum value for which
the surplus of the distributor is non-negative, as done in [5]. Notice that, according
to the model above, only the distributor can sell to the consumers in the country
B. When there is parallel trade freedom, the distributor can also sell to the con-
sumers in the countryA (in the model, parallel trade from the consumers in the
countryB to the consumers in the countryA is always forbidden). Of course, one
has also the constraintqM,D

B = q
D,C
A + q

D,C
B , i.e., the total quantity of the product

sold to the distributor (by the manufacturer) is equal to thetotal quantity of the
product sold by the distributor (to the consumers in the countriesA andB). This
simplifies toqM,D

B = q
D,C
B when parallel trade is forbidden. Finally, in this model

qA = q
M,C
A + q

D,C
A is the quantity of the product sold to the consumers in the

countryA, andqB = q
D,C
B is the quantity of the product sold to the consumers in

the countryB. The process above is illustrated in Figure 1.

3. Optimization of the global welfare function

In this section, using the two-country model for the trade ofpharmaceuticals
described in Section 2, we first determine the surpluses of the manufacturer, of
the distributor, and of the consumers in both countries. Then, on the basis of the
obtained formulas, we provide expressions for the global welfare function under
three different models for it. Finally, in Subsections 3.1,3.2, 3.3, respectively, we
find in closed form the optimal value of the global welfare function itself (i.e., the
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Figure 1: The model of trade among the manufacturer, the distributor,and the
consumers in the countriesA andB when there is parallel trade freedom. When
parallel trade is forbidden, one setsqD,C

A = 0.

one that could be found by a hypothetical global planner, by solving a suitable
optimization problem), for each of the three models. Then, the results of this
analysis are exploited in Section 5 as one of the ingredientsneeded to compute the
price of anarchy for thenoncooperative game-theoretic models of parallel trade
presented in Section 4.

Proposition 3.1. For the two-country model of trade of pharmaceuticals described
in Section 2, one has the following expressions for the surpluses of the manufac-
turer, of the distributor, and of the consumers in the countriesA andB.

(a) When the manufacturer does research and development:
(i) Manufacturer’s surplusSM :

SM = p
M,C
A q

M,C
A + p

M,D
B q

M,D
B −CF + TP . (3)

(ii) Distributor’s surplusSD:

SD = (pD,C
A − p

M,D
B − t)qD,C

A + (pD,C
B − p

M,D
B )qD,C

B −TP . (4)

(iii) Consumers’ surplusSCA
in the countryA:

SCA
=

γa

b

(

q
M,C
A + q

D,C
A

)

−p
M,C
A q

M,C
A −p

D,C
A q

D,C
A −

(

q
M,C
A + q

D,C
A

)2

2b
.

(5)
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(iv) Consumers’ surplusSCB
in the countryB:

SCB
=

(a

b
− p

D,C
B

)

q
D,C
B −

(

q
D,C
B

)2

2b
. (6)

(b) When the manufacturer does no research and development:
(i) Manufacturer’s surplusSM :

SM = 0 . (7)

(ii) Distributor’s surplusSD:
SD = 0 . (8)

(iii) Consumers’ surplusSCA
in the countryA:

SCA
= 0 . (9)

(iv) Consumers’ surplusSCB
in the countryB:

SCB
= 0 . (10)

Proof. Case (a):(i), (ii) The proofs of formulas (3) and (4) are immediate.
(iii) In order to prove formula (5), let us suppose that, of the totalqA = q

M,C
A +q

D,C
A

units of the product sold to the consumers in the countryA, the firstqM,C
A ones are

sold by the manufacturer, whereas the lastq
D,C
A ones are sold by the distributor.

Then, taking into account the expression (1) of the demand function in the country
A, the consumers’ surplus in the countryA for the firstqM,C

A units of the product
is

S
(I)
CA

=

∫ q
M,C
A

0

(

γa− q

b
− p

M,C
A

)

dq =
(γa

b
− p

M,C
A

)

q
M,C
A −

(

q
M,C
A

)2

2b
. (11)

Similarly, the consumers’ surplus in the countryA for the remainingqD,C
A units of

the product is

S
(II)
CA

=

∫ q
M,C
A +q

D,C
A

q
M,C
A

(

γa− q

b
− p

D,C
A

)

dq

=
(γa

b
− p

D,C
A

)

q
D,C
A −

(

q
M,C
A + q

D,C
A

)2

2b
+

(

q
M,C
A

)2

2b
. (12)
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Then, formula (5) is obtained by summing (11) and (12). It is important to observe
that one obtains exactly the same expression (5) forSCA

if other choices for the
seller are considered, for each unit of the product. For instance, if one assumes
instead that the firstqD,C

A units of the product bought by the consumers in the
countryA are sold by the distributor, whereas the lastq

M,C
A ones are sold by the

manufacturer, formulas (11) and (12) are replaced, respectively, by

S
(I′)
CA

=

∫ q
D,C
A

0

(

γa− q

b
− p

D,C
A

)

dq =
(γa

b
− p

D,C
A

)

q
D,C
A −

(

q
D,C
A

)2

2b
, (13)

and

S
(II′)
CA

=

∫ q
D,C
A +q

M,C
A

q
D,C
A

(

γa− q

b
− p

M,C
A

)

dq

=
(γa

b
− p

M,C
A

)

q
M,C
A −

(

q
D,C
A + q

M,C
A

)2

2b
+

(

q
D,C
A

)2

2b
, (14)

and also the sum of (13) and (14) provides the expression (5) for SCA
.

(iv) Finally, formula (6) is proved likewise formula (5), noting that the consumers
in the countryB buy only from the distributor:

SCB
=

∫ q
D,C
B

0

(

a− q

b
− p

D,C
B

)

dq =
(a

b
− p

D,C
B

)

q
D,C
B −

(

q
D,C
B

)2

2b
. (15)

Case (b):(i), (ii), (iii), (iv) When the manufacturer does no researchand develop-
ment, no costs are incurred and no quantities are exchanged,so all the surpluses
are equal to0. �

We now define the following three models for the global welfare function, to
be maximized by the global planner under suitable constraints. In the following,
we use the subscript “PT ” to denote the situation in which there is parallel trade
freedom, whereas the subscript “NPT ” refers to the case in which parallel trade
is not permitted.

(i) Bentham model: it is defined as the sum of all the surpluses. Whenthe
manufacturer does research and developmentand parallel trade is permitted,
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it has the following expression2 GW
(B)
PT , which is a functiononly of the

total fixed cost of production and of the traded quantities(for simplicity,
here we have removed the dependence onq

M,D
B , using the constraintqM,D

B =
q
D,C
A + q

D,C
B ):

GW
(B)
PT (CF , q

M,C
A , q

D,C
A , q

D,C
B )

=SM + SD + SCA
+ SCB

=
γa

b

(

q
M,C
A + q

D,C
A

)

−

(

q
M,C
A + q

D,C
A

)2

2b
− tq

D,C
A +

a

b
q
D,C
B −

(

q
D,C
B

)2

2b
−CF .

(16)

Whenthe manufacturer does research and development andparallel trade is
not permitted, it has the following simpler expressionGW

(B)
NPT :

GW
(B)
NPT (CF , q

M,C
A , q

D,C
B )

=SM + SD + SCA
+ SCB

=
γa

b
q
M,C
A −

(

q
M,C
A

)2

2b
+

a

b
q
D,C
B −

(

q
D,C
B

)2

2b
−CF , (17)

which is obtained from (16) by settingqD,C
A = 0.

Finally, when the manufacturer does no research and development, one has
obviouslyGW

(B)
NPT = 0.

(ii) Rawls model, first specification: it is defined as the minimum between the
national welfares of the two countries, where each nationalwelfare is defined
as the sum of the surpluses of the entities belonging to that country. Hence,
when the manufacturer does research and development andparallel trade
is permitted, it has the following expressionGW

(R,I)
PT , which is a function

of the total fixed cost of production, of the transfer payment, of the prices
involving entities belonging to different countries, and of all the quantities:

2Formula (16) is derived using the expressions forSM , SD, SCA
, andSCB

provided by for-
mulas (3), (4), (5), and (6), respectively, taking into account the constraintqM,D

B = q
D,C
A + q

D,C
B ,

and observing that all the terms containing prices cancel out in the summation.
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GW
(R,I)
PT (CF , TP ,p

D,C
A , p

M,D
B , q

M,C
A , q

D,C
A , q

M,D
B , q

D,C
B )

= min{SM + SCA
, SD + SCB

}

= min

{

p
M,D
B q

M,D
B +

γa

b

(

q
M,C
A + q

D,C
A

)

− p
D,C
A q

D,C
A −

(

q
M,C
A

+ q
D,C
A

)2

2b
−CF + TP ,

(

p
D,C
A

− p
M,D
B

− t
)

q
D,C
A

+
(a

b
− p

M,D
B

)

q
D,C
B

−

(

q
D,C
B

)2

2b
−TP

}

.

(18)

Whenthe manufacturer does research and development andparallel trade is
not permitted, it has the following simpler expressionGW

(R,I)
NPT :

GW
(R,I)
NPT (CF , TP ,p

M,D
B , q

M,C
A , q

M,D
B , q

D,C
B )

= min{SM + SCA
, SD + SCB

}

= min

{

p
M,D
B q

M,D
B +

γa

b
q
M,C
A −

(

q
M,C
A

)2

2b
,

(a

b
− p

M,D
B

)

q
D,C
B −

(

q
D,C
B

)2

2b

}

.

(19)

Finally, when the manufacturer does no research and development, one has
obviouslyGW

(R,I)
NPT = 0.

(iii) Rawls model, second specification: it is defined as the minimum of all the
surpluses. Hence, whenthe manufacturer does research and development
and parallel trade is permitted, it has the following expression GW

(R,II)
PT ,

which is a function ofthe total fixed cost of production, of the transfer pay-
ment, and ofall the prices and quantities:
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GW
(R,II)
PT (CF , TP ,p

M,C
A , p

D,C
A , p

M,D
B , p

D,C
B , q

M,C
A , q

D,C
A , q

M,D
B , q

D,C
B )

= min{SM , SD, SCA
, SCB

}

= min

{

p
M,C
A q

M,C
A + p

M,D
B q

M,D
B −CF + TP ,

(pD,C
A − p

M,D
B − t)qD,C

A + (pD,C
B − p

M,D
B )qD,C

B −TP ,

γa

b

(

q
M,C
A + q

D,C
A

)

− p
M,C
A q

M,C
A − p

D,C
A q

D,C
A −

(

q
M,C
A + q

D,C
A

)2

2b
,

(a

b
− p

D,C
B

)

q
D,C
B −

(

q
D,C
B

)2

2b

}

.

(20)

Whenthe manufacturer does research and development andparallel trade is
not permitted, it has the following simpler expressionGW

(R,II)
NPT :

GW
(R,II)
NPT (CF , TP ,p

M,C
A , p

M,D
B , p

D,C
B , q

M,C
A , q

M,D
B , q

D,C
B )

= min{SM , SD, SCA
, SCB

}

= min

{

p
M,C
A q

M,C
A + p

M,D
B q

M,D
B −CF + TP ,

(pD,C
B − p

M,D
B )qD,C

B −TP ,

(γa

b
− p

M,C
A q

M,C
A

)

−

(

q
M,C
A

)2

2b
,

a

b
q
D,C
B − p

D,C
B q

D,C
B −

(

q
D,C
B

)2

2b

}

.

(21)

Finally, when the manufacturer does no research and development, one has
obviouslyGW

(R,II)
NPT = 0.

In the following subsections, for each model of the global welfare function,
we find its optimal value for a global planner who maximizes itunder suitable
assumptions. In general, two kinds of results are obtained:one when the manu-
facturer does research and development, the other one when the manufacturer does
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no research and development. Of the two situations, the global planner prefers the
one with the largest value of the global welfare.

Remark 3.2. Since, for each model, the second situation is associated with a 0
value of the global welfare, the optimal global welfare for the global planner is
always non-negative. Moreover, an inspection of the proofsin the next subsections
shows that the corresponding optimal solution for the global planner is always
associated with non-negative surpluses for all the entities involved (manufacturer,
distributor, and consumers of both countries). �

3.1. Optimization of the global welfare under the Bentham model

We first consider the case in whichthe manufacturer does research and devel-
opment andparallel trade is permitted. Then, in order to find the optimal value of
the global welfareGW

(B)
PT provided by formula (16) under the Bentham model,

the global planner has to solve the following optimization problem:

maximize
q
M,C
A ,q

D,C
A ,q

D,C
B

GW
(B)
PT (CF ,q

M,C
A , q

D,C
A , q

D,C
B )

s. t. q
M,C
A , q

D,C
A , q

D,C
B ≥ 0 . (22)

Of course, when the manufacturer does no research and development and parallel
trade is permitted, there is nothing to optimize, and the optimal value ofGW

(B)
PT

is 0.

Proposition 3.3. When the manufacturer does research and development:the op-
timal value of the objectiveGW

(B)
PT of the optimization problem (22) modeling

parallel trade freedom under the Bentham global welfare model is

(

GW
(B)
PT

)◦
=

(γ2 + 1) a2

2b
−CF . (23)

When the manufacturer does no research and development: theoptimal value of
GW

(B)
PT is

(

GW
(B)
PT

)◦
= 0 . (24)
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Proof. We start considering the case in which the manufacturer doesresearch
and development.One can observe that the global welfareGW

(B)
PT provided by

formula (16) is a function having the separable structure

GW
(B)
PT (CF ,q

M,C
A , q

D,C
A , q

D,C
B ) = GW

(B,I)
PT (qM,C

A , q
D,C
A )+GW

(B,II)
PT (qD,C

B ) , (25)

where

GW
(B,I)
PT (qM,C

A , q
D,C
A ) =

γa

b

(

q
M,C
A + q

D,C
A

)

−

(

q
M,C
A + q

D,C
A

)2

2b
− tq

D,C
A −CF ,

(26)
and

GW
(B,II)
PT (qD,C

B ) =
a

b
q
D,C
B −

(

q
D,C
B

)2

2b
. (27)

Hence, due to the separability of its objective function andto the form of its con-
straints, solving the optimization problem (22) is reducedto solving the two fol-
lowing optimization problems:

maximize
q
M,C
A

,q
D,C
A

GW
(B,I)
PT (qM,C

A , q
D,C
A ) =

γa

b

(

q
M,C
A + q

D,C
A

)

−

(

q
M,C
A + q

D,C
A

)2

2b
− tq

D,C
A −CF

s. t. q
M,C
A , q

D,C
A ≥ 0 , (28)

and

maximize
q
D,C
B

GW
(B,II)
PT (qD,C

B ) =
a

b
q
D,C
B −

(

q
D,C
B

)2

2b

s. t. q
D,C
B ≥ 0 . (29)

We now consider the two problems separately.

(i) The optimization problem (28) is a concave quadratic maximization prob-
lem. By introducing the Lagrangian function

L(I)(qM,C
A , q

D,C
A , µ

M,C
A , µ

D,C
A ) = GW

(B,I)
PT (qM,C

A , q
D,C
A )+µ

M,C
A q

M,C
A +µ

D,C
A q

D,C
A ,

(30)
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it is solved by imposing the following Karush-Kuhn-Tucker optimality con-
ditions3:



























































stationarity :
∂L(I)

∂q
M,C
A

=
γa

b
− q

M,C
A + q

D,C
A

b
+ µ

M,C
A = 0 ,

∂L(I)

∂q
D,C
A

=
γa

b
− q

M,C
A + q

D,C
A

b
− t+ µ

D,C
A = 0 ,

primal feasibility : q
M,C
A , q

D,C
A ≥ 0 ,

dual feasibility : µ
M,C
A , µ

D,C
A ≥ 0 ,

complementary slackness : µ
M,C
A q

M,C
A , µ

D,C
A q

D,C
A = 0 .

(31)

Then, it is straightforward to see that, for anyt > 0, the system (31) has the
unique solution























q
M,C
A = γa ,

q
D,C
A = 0 ,

µ
M,C
A = 0 ,

µ
D,C
A = t .

(32)

For t = 0, one gets the infinite number of solutions described by










q
M,C
A , q

D,C
A ≥ 0 s. t. qM,C

A + q
D,C
A = γa ,

µ
M,C
A = 0 ,

µ
D,C
A = 0 .

(33)

Finally, for both formulas (32) and (33), one hasqA = q
M,C
A + q

D,C
A = γa.

Hence, for both cases, the value of the objectiveGW
(B,I)
PT (qM,C

A , q
D,C
A ) at

optimality is

(

GW
(B,I)
PT

)◦
=

(γa)2

b
−CF − (γa)2

2b
=

(γa)2

2b
−CF . (34)

3For both optimization problems (28) and (29), the qualification of the constraints holds, due to
their linearity [10]. Moreover, for both problems, Karush-Kuhn-Tucker optimality conditions are
necessary and sufficient for optimality, due to the concavity of the respective objective functions.
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(ii) Similarly, also the optimization problem (29) is a concave quadratic maxi-
mization problem. Again, by introducing the Lagrangian function

L(II)(qD,C
B , µ

D,C
B ) =

a

b
q
D,C
B −

(

q
D,C
B

)2

2b
, (35)

also the optimization problem (29) is solved by imposing theKarush-Kuhn-
Tucker optimality conditions, which have now the followingform:



































stationarity :
∂L(II)

∂q
D,C
B

=
a

b
− q

D,C
B

b
+ µ

D,C
B = 0 ,

primal feasibility : q
D,C
B ≥ 0 ,

dual feasibility : µ
D,C
B ≥ 0 ,

complementary slackness : µ
D,C
B q

D,C
B = 0 .

(36)

Then, one can see that, for anyt ≥ 0, the system (36) has the unique solution
{

q
D,C
B = a ,

µ
D,C
B = 0 .

(37)

Finally, the value of the objectiveGW
(B,I)
PT (qD,C

B ) at optimality is

(

GW
(B,II)
PT

)◦
=

a2

b
− a2

2b
=

a2

2b
. (38)

Concluding, the optimal value of the objectiveGW
(B)
PT (qM,D

A , q
D,C
A , q

D,C
B ) of

the original optimization problem (22) modeling parallel trade freedom under the
Bentham global welfare model is

(

GW
(B)
PT

)◦
=

(

GW
(B,I)
PT

)◦
+
(

GW
(B,II)
PT

)◦
=

(γ2 + 1) a2

2b
−CF ,

which is (23). Finally, for the case in which the manufacturer does no research
and development, (24) follows trivially from the definitionof the present global
welfare function in Section 3. �
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Remark 3.4. The meaning of the optimal solutions of the optimization problems
(28) and (29) considered in the proof of Proposition 3.3 is the following. Since
there is no dependence of their objectives on the prices, onecan assume at first
that all the prices are equal to0. In such a case, thesurpluses of the manufacturer
and of the distributorwould be−CF and0, respectively. Moreover, at optimality,
the consumers in each country would obtain the maximum desired quantity of the
product (i.e., taking into account the expressions (1) and (2) of the respective de-
mand functions,γa in the countryA, anda in the countryB). As a consequence,
using formula (5), the corresponding surplus for the consumers in the countryA
would be

SCA
=

γa

b
(γa)− (γa)2

2b
=

(γa)2

2b
, (39)

whereas, using formula (6), the corresponding surplus for the consumers in the
countryB would be

SCB
=

a

b
a− a2

2b
=

a2

2b
. (40)

Hence, their sum would be equal to (23). For the case of non-zero prices, the
optimal sum of all the surpluses would be the same as in (23), but it would be
re-distributed among the manufacturer, the distributor, and the consumers in the
two countries. �

For the case in which parallel trade is forbidden, one has to use the expression
(17) for the Bentham global welfare functionGW

(B)
NPT , and solve the following

optimization problem:

maximize
q
M,C
A ,q

D,C
B

GW
(B)
NPT (CF , q

M,C
A , q

D,C
B )

s. t. q
M,C
A , q

D,C
B ≥ 0 . (41)

Again, when the manufacturer does no research and development and parallel
trade is forbidden, there is nothing to optimize, and the optimal value ofGW

(B)
NPT

is 0.

Proposition 3.5. When the manufacturer does research and development:the op-
timal value of the objectiveGW

(B)
NPT of the optimization problem (41) modeling

parallel trade banning under the Bentham global welfare model is

(

GW
(B)
NPT

)◦
=

(γ2 + 1) a2

2b
−CF . (42)
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When the manufacturer does no research and development: theoptimal value of
GW

(B)
NPT is

(

GW
(B)
NPT

)◦
= 0 . (43)

Proof. As shown in the proof of Proposition 3.5, for anyt ≥ 0, among the optimal
solutions of the optimization problem (22), there is alwaysone for whichqD,C

A =
0, which is feasible for the more constrained optimization problem (41) (i.e., it
satisfies all its constraints). Hence, one obtains (42),whereas (43) follows trivially
from the definition of the present global welfare function inSection 3. �

3.2. Optimization of the global welfare under the first specification of the Rawls
model

We first consider the case in whichthe manufacturer does research and devel-
opment, there is no transfer payment, andthere is parallel trade freedom. Then, by
using the expression (18) for the global welfareGW

(R,I)
PT under the first specifica-

tion of the Rawls model, and introducing the reduced row vector of pricesp
red

=
(

p
D,C
A , p

M,D
B

)

and the row vector of quantitiesq =
(

q
M,C
A , q

D,C
A , q

M,D
B , q

D,C
B

)

, the

optimization problem to be solved by the global planner for this case is formulated
as

maximize
TP ,p

red
,p

D,C
B ,q

GW
(R,I)
PT (CF , TP ,pred, q)

s. t. q
M,D
B = q

D,C
A + q

D,C
B ,

p
D,C
A ≥ p

M,D
B + t ,

p
D,C
B ≥ p

M,D
B ,

p
red

≥ 0, pD,C
B ≥ 0, q ≥ 0 ,

TP = 0 , (44)
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which is a maximin optimization problem.A related maximin optimization prob-
lem is

maximize
TP ,p

red
,p

D,C
B ,q

GW
(R,I)
PT (CF , TP , pred, q)

s. t. q
M,D
B = q

D,C
A + q

D,C
B ,

p
D,C
A ≥ p

M,D
B + t ,

p
D,C
B ≥ p

M,D
B ,

p
red

≥ 0, pD,C
B ≥ 0, q ≥ 0 ,

0 ≤ TP ≤ SD , (45)

which is obtained by replacing the constraintTP = 0 in (44) by 0 ≤ TP ≤
SD (i.e., a possibly non-zero transfer payment is paid by the distributor to the
manufacturer).

Proposition 3.6. When the manufacturer does research and development:the op-
timal value of the objectiveGW

(R,I)
PT of the optimizationproblems (44) and (45)

modeling parallel trade freedom under the first specification of the Rawls global
welfare model is

(

GW
(R,I)
PT

)◦
=















(γ2 + 1) a2

4b
− CF

2
=

1

2

(

GW
(B)
PT

)◦
if

(γa)2

2b
− CF ≥ −a2

2b
,

(γ2 + 1) a2

2b
− CF < 0 if

(γa)2

2b
− CF < −a2

2b
,

(46)
When the manufacturer does no research and development: theoptimal value of
GW

(R,I)
PT is

(

GW
(R,I)
PT

)◦
= 0 . (47)

Proof. We first consider the case of the optimization problem (44), when the man-
ufacturer does research and development.Since the global welfareGW

(R,I)
PT is the

minimum between the national welfare of the countryA and the national welfare

of the countryB, and the maximum value of their sum is
(

GW
(B)
PT

)◦
, one gets

(

GW
(R,I)
PT

)◦
≤ 1

2

(

GW
(B)
PT

)◦
. (48)
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To prove (46), it remains to show that, for every sufficientlysmall ε > 0, there

exists a feasible solution
{

CF , 0,p
(ε)
red

, (pD,C
B )(ε), q(ε)

}

of the optimization problem

(44) for which one has

GW
(R,I)
PT (CF , 0,p

(ε)

red
, q(ε))≥1

2

(

GW
(B)
PT

)◦
− ε . (49)

To obtain such a feasible solution
{

CF , 0,p
(ε)
red

, (pD,C
B )(ε), q(ε)

}

, we start by con-

sidering the case in whichpD,C
A = t, pM,D

B = p
D,C
B = 0, qM,C

A = γa, qD,C
A = 0,

q
M,D
B = a, andqD,C

B = a, which corresponds to the feasible solution
{

CF , TP ,p̂red, p̂
D,C
B , q̂

}

= {CF , 0,(t, 0), 0, (γa, 0, a, a)} . (50)

In such a situation, one hasGW
(B)
PT (CF , 0,p̂red, q̂) =

(

GW
(B)
PT

)◦
(as shown in the

proof of Proposition 3.3), and,when (γa)2

2b
− CF > a2

2b
,

GW
(R,I)
PT (CF , 0,p̂red, q̂) = min

{

(γa)2

2b
−CF ,

a2

2b

}

=
a2

2b
. (51)

Then, starting fromthe feasible solution (50)- for which the national welfare in
the countryA is greater than the national welfare in the countryB - one can
transfer part of the current national welfare from the country A to the coun-
try B, by increasing the pricepD,C

A of an amount∆p > 0 and the quantity
q
D,C
A of an amount∆q ∈ (0, γa], and decreasing the quantityqM,C

A of the same
amount∆q. In this way, the sum of the two national welfares decreases of
t∆q (as the quantitiesqM,C

A + q
D,C
A and q

D,C
B are kept constant, but a decrease

of t∆q is incurred, due to the parallel trade costs). More specifically, the na-
tional welfare of the countryA decreases of(∆p + t)∆q, whereas the national
welfare of the countryB increases of∆p∆q. Now, we choose∆p and∆q in
such a way that(∆p + t)∆q = (γ2−1)a2

4b
−CF

2
and t∆q = ε (i.e., ∆q = ε

t
and

∆p =
(

(γ2−1)a2

4b
−CF

2
− ε

)

t), and we define the new feasible solution

{

CF , 0,p
(ε)

red
, (pD,C

B )(ε), q(ε)
}

=

{

CF , 0,

((

1 +
(γ2 − 1)a2

4b
−CF

2
− ε

)

t, 0

)

, 0,
(

γa− ε

t
,
ε

t
, a, a

)

}

.

(52)
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By construction,p(ε)
red

and q(ε) satisfy (49), which completes the proof of (46),

taking the limit asε tends to0, for the case in which(γa)
2

2b
− CF > a2

2b
.

When
∣

∣

∣

(γa)2

2b
− CF

∣

∣

∣
≤ a2

2b
, formula (51) changes to

GW
(R,I)
PT (p̂

red
, q̂) = min

{

(γa)2

2b
− CF ,

a2

2b

}

=
(γa)2

2b
− CF . (53)

Also in this case, one can transfer part of the current national welfare from the
countryB to the countryA, by raising the pricepM,D

B andpD,C
B of the same amount

∆p = (1−γ2)a2

2ab
+ CF

a
, allowing one to find again two choices ofp(ε)

red
andq(ε) that

satisfy (49), hence proving (46) also for this case.
As a last case, when(γa)

2

2b
− CF < −a2

2b
, the national welfare in the country

A is always negative, whereas the national welfare in the country B is always
non-negative, so, starting from the feasible solution (50), one can transfer all the
current positive national welfare from the countryB to the countryA, by raising
the pricepM,D

B andpD,C
B of the same amount∆p = a2

2ab
. In this case, the first

country obtains its maximum possible (negative) value of the national welfare,

which is
(γ2+1)a2

2b
− CF .

For the optimization problem (45), one obtains the same expressions as above
of the optimal value of the objectiveGW

(R,I)
PT , due to the fact that the optimal

value of the objective in (44) satisfies with equality the upper bound (48) - which
is valid also for the problem (45) - and the fact that (45) is less constrained than
(44), hence the optimal value of its objective is larger thanor equal to the optimal
value of the same objective in (44).

Finally, for the case in which the manufacturer does no research and devel-
opment, (47) follows trivially from the definition of the present global welfare
function in Section 3. �

For the case in whichthe manufacturer does research and development, there is
no transfer payment, andparallel trade is forbidden, one has to use the expression
(19) for the global welfare functionGW

(R,I)
NPT under the first specification of the
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Rawls model, and solve the following optimization problem:

maximize
TP ,p

M,D
B ,p

D,C
B ,q

M,C
A ,q

M,D
B ,q

D,C
B

GW
(R,I)
NPT (CF , TP ,p

M,D
B , q

M,C
A , q

M,D
B , q

D,C
B )

s. t. q
M,D
B = q

D,C
B ,

p
D,C
B ≥ p

M,D
B ,

p
M,D
B , p

D,C
B , q

M,C
A , q

M,D
B , q

D,C
B ≥ 0 ,

TP = 0 , (54)

which is also a maximin optimization problem.Again, a related maximin opti-
mization problem is

maximize
TP ,p

M,D
B ,p

D,C
B ,q

M,C
A ,q

M,D
B ,q

D,C
B

GW
(R,I)
NPT (CF , TP ,p

M,D
B , q

M,C
A , q

M,D
B , q

D,C
B )

s. t. q
M,D
B = q

D,C
B ,

p
D,C
B ≥ p

M,D
B ,

p
M,D
B , p

D,C
B , q

M,C
A , q

M,D
B , q

D,C
B ≥ 0 ,

0 ≤ TP ≤ SD , (55)

which is obtained by replacing the constraintTP = 0 in (54) by0 ≤ TP ≤ SD.

Proposition 3.7. When the manufacturer does research and development:the op-
timal value of the objectiveGW

(R,I)
NPT of the optimization problem (54) modeling

parallel trade freedom under the first specification of the Rawls global welfare
model is

(

GW
(R,I)
NPT

)◦
=



































min

{

(γa)2

2b
− CF ,

a2

2b

}

=
a2

2b
if

(γa)2

2b
− CF >

a2

2b
,

(γ2 + 1) a2

4b
− CF

2
=

1

2

(

GW
(B)
PT

)◦
if

∣

∣

∣

∣

(γa)2

2b
− CF

∣

∣

∣

∣

≤ a2

2b
,

(γ2 + 1) a2

2b
− CF < 0 if

(γa)2

2b
− CF < −a2

2b
,

(56)
whereas the corresponding optimal value of the objectiveGW

(R,I)
NPT of the opti-

mization problem (55) is

(

GW
(R,I)
NPT

)◦
=

(γ2 + 1) a2

4b
− CF

2
=

1

2

(

GW
(B)
PT

)◦
. (57)
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When the manufacturer does no research and development: theoptimal value of
GW

(R,I)
NPT is

(

GW
(R,I)
NPT

)◦
= 0 . (58)

Proof. We first consider the case of the optimization problem (54), when the man-
ufacturer does research and development. When(γa)2

2b
− CF > a2

2b
, starting from

the feasible solution

(CF , TP ,p̄
M,D
B , q̄

M,C
A , q̄

M,D
B , q̄

D,C
B ) = (CF , 0,0, γa, a, a) , (59)

which corresponds to the one{CF , 0, (t, 0), 0, (γa, 0, a, a)} in (50) and produces
the same values for the national welfares (which also maximize the sum of the na-
tional welfares, as already shown in the proof of Proposition 3.3), it is not possible
to transfer part of the current national welfare from the country A to the country
B. Indeed, a negative pricepM,D

B is not admissible, and, differently from the proof
of Proposition 3.7, one cannot increaseq

D,C
A , which has to be equal to0 due to the

assumption of parallel trade banning. Then, since its set offeasible solutions is
convex, (59) is an optimal solution of (54), which proves (56) for (γa)2

2b
−CF ≥ a2

2b
.

When
∣

∣

∣

(γa)2

2b
− CF

∣

∣

∣
≤ a2

2b
, starting from the feasible solution (59), one can

transfer part of the current national welfare from the country B to the country
A, by raising the pricepM,D

B andpD,C
B of the same amount∆p = (1−γ2)a2

2ab
+ CF

a
,

allowing one to conclude as in the corresponding part of the proof of Proposition
3.6.

As a last case, when(γa)
2

2b
− CF < −a2

2b
, the national welfare in the country

A is always negative, whereas the national welfare in the country B is always
non-negative, so, starting from the feasible solution (59), one can transfer all the
current positive national welfare from the countryB to the countryA, by raising
the pricepM,D

B andpD,C
B of the same amount∆p = a2

2ab
. In this case, the first

country obtains its maximum possible (negative) value of the national welfare,

which is
(γ2+1)a2

2b
− CF .

For the optimization problem (54), the only difference withrespect to the
proof above is that, when the manufacturer does research anddevelopment and
(γa)2

2b
− CF ≥ a2

2b
, starting from the feasible solution (59), one can transferpart of

the current national welfare from the countryB to the countryA, by raising the
transfer payment from0 to (1−γ2)a2

4b
+ CF

2
, making the two national welfares equal

to the same value
(γ2+1)a2

4b
− CF

2
= 1

2

(

GW
(B)
PT

)◦
.
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Finally, for the case in which the manufacturer does no research and devel-
opment, (58) follows trivially from the definition of the present global welfare
function in Section 3. �

3.3. Optimization of the global welfare under the second specification of the
Rawls model

Again, we first consider the case in whichthe manufacturer does research and
development, there is no transfer payment, andthere is parallel trade freedom.
Then, by using the expression (20) for the global welfareGW

(R,II)
PT under the sec-

ond specification of the Rawls model, and introducing the row vector of prices

p =
(

p
M,C
A , p

D,C
A , p

M,D
B , p

D,C
B , q

M,C
A , q

D,C
A , q

M,D
B , q

D,C
B

)

besides the row vector of

quantitiesq =
(

q
M,C
A , q

D,C
A , q

M,D
B , q

D,C
B

)

already used in Subsection 3.2, the opti-

mization problem to be solved by the global planner is now formulated as

maximize
TP ,p,q

GW
(R,II)
PT (CF , TP ,p, q)

s. t. q
M,D
B = q

D,C
A + q

D,C
B ,

p
D,C
A ≥ p

M,D
B + t ,

p
D,C
B ≥ p

M,D
B ,

p, q ≥ 0 ,

TP = 0 , (60)

which is a maximin optimization problem, likewise the optimization problem (44).
Again, a related maximin optimization problem is

maximize
TP ,p,q

GW
(R,II)
PT (CF , TP ,p, q)

s. t. q
M,D
B = q

D,C
A + q

D,C
B ,

p
D,C
A ≥ p

M,D
B + t ,

p
D,C
B ≥ p

M,D
B ,

p, q ≥ 0 ,

0 ≤ TP ≤ SD , (61)

which is obtained by replacing the constraintTP = 0 in (60) by0 ≤ TP ≤ SD.
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Proposition 3.8. When the manufacturer does research and development:the
optimal value of the objectiveGW

(R,II)
PT of the optimizationproblems (60) and

(61) modeling parallel trade freedom under the second specification of the Rawls
global welfare model is

(

GW
(R,II)
PT

)◦
=



















































a2

2b
if γ >

√

3+
2bCF

a2
,

(γ2 + 1)a2

8b
−CF

4
=

1

4

(

GW
(B)
PT

)◦
if 1 < γ ≤

√

3+
2bCF

a2

and
(γa)2

2b
− CF ≥ −a2

2b
,

(γ2 + 1)a2

2b
− CF

2
if

(γa)2

2b
− CF < −a2

2b
.

When the manufacturer does no research and development: theoptimal value of
GW

(R,II)
NPT is

(

GW
(R,II)
NPT

)◦
= 0 . (62)

Proof. We start considering the case in which the manufacturer doesresearch and
development (the following analysis is the same for both problems (60) and (61)).
By Proposition 3.3, the optimal value of the sum of all the surpluses is equal to
(

GW
(B)
PT

)◦
=

(γ2+1)a2
2b

−CF , which is also achieved according to its proof. When

1 < γ ≤
√

3+2bCF

a2
and (γa)2

2b
−CF ≥ −a2

2b
, by choosing a suitable feasible vector

of pricesp, one can re-distribute the surpluses corresponding to suchan optimal
solution equally among the4 entities, thus obtaining

(

GW
(R,II)
PT

)◦
=

1

4

(

GW
(B)
PT

)◦
=

(γ2 + 1) a2

8b
−CF

4
. (63)

Whenγ >

√

3+2bCF

a2
, instead, by choosing another suitable feasible vector of

pricesp with p
M,D
B = p

D,C
B = 0, one can achieve the valuea

2

2b
for the surplusSCB

of the consumers in the countryB (which is also its maximum value, as it can be
seen by observing thatSCB

is bounded from above by the optimal value of the
objective of the optimization problem (29)) and re-distribute the remaining sum
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γ2a2

2b
−CF > 3a2

2b
of the surpluses equally among the manufacturer, the distributor,

and the consumers in the countryA. Hence, for such a case, one obtains

(

GW
(R,II)
PT

)◦
=

a2

2b
. (64)

As a last case, when(γa)
2

2b
− CF < −a2

2b
, the surplus of the manufacturer is

always negative, whereas the surpluses of all the other entities are always non-
negative, so, starting from the feasible solution (59), onecan transfer all the cur-
rent positive surpluses of the other entities to the manufacturer, by raising the
price p

M,D
B and p

D,C
B of the same amount∆p = a2

2ab
. In this case, the manu-

facturer obtains its maximum possible (negative) value of the surplus, which is
(γ2+1)a2

2b
− CF .

Finally, for the case in which the manufacturer does no research and devel-
opment, (62) follows trivially from the definition of the present global welfare
function in Section 3. �

As a last case, when the manufacturer does research and development, there is
no transfer payment, andparallel trade is forbidden, one has to use the expression
(21) for the global welfare functionGW

(R,II)
NPT under the second specification of

the Rawls model, and solve the following optimization problem:

maximize
TP ,p

M,C
A

,p
M,D
B

,p
D,C
B

,q
M,C
A

,q
M,D
B

,q
D,C
B

GW
CF ,TP ,(R,II)
NPT
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B

, q
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, q
M,D
B

, q
D,C
B

)

s. t. q
M,D
B

= q
D,C
B

,

p
D,C
B ≥ p

M,D
B ,

p
M,C
A , p

M,D
B , p

D,C
B , q

M,C
A , q

M,D
B , q

D,C
B ≥ 0 ,

TP = 0 , (65)

which is also a maximin optimization problem.Again, a related maximin opti-
mization problem is

maximize
TP ,p

M,C
A

,p
M,D
B

,p
D,C
B

,q
M,C
A

,q
M,D
B

,q
D,C
B

GW
CF ,TP ,(R,II)
NPT

(pM,C
A

, p
M,D
B

, p
D,C
B

, q
M,C
A

, q
M,D
B

, q
D,C
B

)

s. t. q
M,D
B = q

D,C
B ,

p
D,C
B ≥ p

M,D
B ,

p
M,C
A , p

M,D
B , p

D,C
B , q

M,C
A , q

M,D
B , q

D,C
B ≥ 0 ,

0 ≤ TP ≤ SD , (66)

25



which is obtained by replacing the constraintTP = 0 in (65) by0 ≤ TP ≤ SD.

Proposition 3.9. When the manufacturer does research and development: the op-
timal value of the objectiveGW

(R,II)
NPT of the optimization problem (65) modeling

parallel trade freedom under the second specification of theRawls global welfare
model is

(

GW
(R,II)
NPT

)◦
=



































a2

4b
=

1

2

(

GW
(R,I)
NPT

)◦
if

(γa)2

2b
− CF >

a2

2b
,

(

γ2 + 1
)

a2

8b
− CF

4
=

1

4

(

GW
(B)
PT

)◦
if

∣

∣

∣

∣

(γa)2

2b
− CF

∣

∣

∣

∣

≤ a2

2b
,

(

γ2 + 1
)

a2

2b
− CF < 0 if

(γa)2

2b
− CF < −a2

2b
.

(67)

Proof. We first consider the case of the optimization problem (65), when the man-
ufacturer does research and development. When(γa)2

2b
− CF ≥ −a2

2b
, starting

from an optimal solution of the optimization problem (54) (which maximizes the
minimum of the two national welfares), for each country, theglobal planner can
re-distribute the national welfare equally between the twoentities of the country,
by making suitable feasible choices for the prices.Hence, taking into account the
first two cases of formula (56), one obtains the first two casesof formula (67).
Finally, when(γa)2

2b
− CF < −a2

2b
, one can proceed likewise in the corresponding

part of the proof of Proposition 3.7, hence proving also the last case offormula
(67). �

4. Background: threegame-theoretic models for parallel tradebanning/parallel
trade threat/parallel trade occurrence

In practice, the prices and quantities of the model presented in Section 2 in
general cannot be chosen realistically by a global planner,because - given the
demand functions - they depend on the interaction between the manufacturer and
the distributor. As already-mentioned in Section 1, two game-theoretic dynamic
noncooperative modelswereproposed in [7] to describe the interaction between
the manufacturer and the distributor,and another one was proposed earlier in [5].
Although the three models above refer to increasing levels of complexity, their
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subgame-perfect Nash equilibria4 determine prices and quantities at equilibrium
that are in general different from the ones determined by theglobal planner. In this
section, we shortly summarize such game-theoretic models.Then, in Section 5 ,
we compute the corresponding value of the global welfare function at equilibrium,
for each of the three models of the global welfare function presented in Section
3. Finally, in Section 5, by using the concept of price of anarchy, we compute
the loss in efficiency in the optimization of the global welfare function, which is
incurred when moving from the optimal solution determined by the global planner
to the prices and quantities at the “worst” subgame-perfectNash equilibrium.

The following is a short summary of the results of the analysis of the noncoop-
erative game-theoretic models proposed in[5] and [7] for the interaction among
the manufacturer and the distributor.The models are ordered according to an in-
creasing level of complexity of the interaction between themanufacturer and the
distributor.

(i) First noncooperative game-theoretic model: parallel trade is forbidden,
i.e.,qD,C

A = 0. The interaction of the players (here, the manufacturer andthe
distributor) is described by a dynamic noncooperative gamewith perfect and
complete information. In the first stage, the manufacturer sets the wholesale
pricepM,D

B for the distributor. Then, in the second stage, the distributor sets
the retail pricepD,C

B for the consumers in the countryB. No transfer payment
is paid by the distributor to the manufacturer.The game is solved in [12] by
backward induction (the final result is also reported in [7]), providing the
following prices and quantities at a subgame-perfect Nash equilibrium:

4We recall that a subgame-perfect Nash equilibrium of a dynamic noncooperative game is an
equilibrium such that its players’ strategies constitute aNash equilibrium for every subgame of
the original dynamic noncooperative game. Not all Nash equilibria are also subgame-perfect Nash
equilibria. The difference between a generic Nash equilibrium and a subgame-perfect Nash equi-
librium is that the latter requires an additional assumption, which is called sequential rationality
of the players. We refer, e.g., to [11] for more details on theprevious definitions.
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(

p
M,C
A

)(s.p.Nash,NPT )
=
γa

2b
,

(

p
D,C
A

)(s.p.Nash,NPT )
=
(

not uniquely determined, but irrelevant as

(

q
D,C
A

)(s.p.Nash,NPT )
= 0

)

,

(

p
M,D
B

)(s.p.Nash,NPT )
=

a

2b
,

(

p
D,C
B

)(s.p.Nash,NPT )
=
3a

4b
,

(

q
M,C
A

)(s.p.Nash,NPT )
=
γa

2
,

(

q
D,C
A

)(s.p.Nash,NPT )
=0 ,

(

q
M,D
B

)(s.p.Nash,NPT )
=
a

4
,

(

q
D,C
B

)(s.p.Nash,NPT )
=
a

4
.

(68)

(ii) Secondnoncooperative game-theoretic model: parallel trade is permit-
ted, but no parallel trade occurs at equilibrium (parallel trade threat).
Again, the interaction of the players (the manufacturer andthe distributor) is
described by a dynamic noncooperative game with perfect andcomplete in-
formation. In the first stage, the manufacturer sets the wholesale pricepM,D

B

for the distributor. Then, in the second stage, the distributor sets the retail
pricepD,C

B for the consumers in the countryB. In the third stage, the manu-
facturer and the distributor choose simultaneously the pricespM,C

A andpD,C
A

at which they sell the product to the consumers in the countryA, according
to a Bertrand duopoly model. No transfer payment is paid by thedistributor
to the manufacturer. Again, the game is solved in [12] by backward induc-
tion. The result of the equilibrium analysis (also reportedin [7]) depends on
the value of the per-unit parallel trade costt. More precisely, two thresholds
for t are defined in [7]:

tl =







a

2b

(

γ − 5

2

)

if γ ≥ 5

2
,

0 otherwise ,

(69)

th =
a

2b
(γ − 1) . (70)

Of course,tl ≤ th. Hence, one distinguishes among low values fort (0 ≤
t < tl), intermediate values fort (tl ≤ t ≤ th), and high values fort
(t ≥ th). Notice that the first case is meaningful only whentl > 0. Likewise
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in [7], in the following we use the symbolsl, i, andh to denote the three
respective cases. For eacht, the following prices and quantities are obtained
at a subgame-perfect Nash equilibrium(here, we use the superscript “PTT ”
to recall that the present game-theoretic model refers to parallel trade threat):

if 0 ≤ t < tl :
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)(s.p.Nash,l,PTT )
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t

3
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not uniquely determined, but irrelevant as
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q
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)
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q
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B
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= 0

)

,
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B
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not uniquely determined, but irrelevant as
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q
D,C
B

)(s.p.Nash,l,PTT )
= 0
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q
M,C
A

)(s.p.Nash,l,PTT )
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a

6
(4γ − 1)− bt

3
,

(

q
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)(s.p.Nash,l,PTT )
=0 ,
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q
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)(s.p.Nash,l,PTT )
=0 ,
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q
D,C
B

)(s.p.Nash,l,PTT )
=0 ,

(71)

if tl ≤ t ≤ th :
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=
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(5− 2γ) +
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3
,

(72)
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if t > th :
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2b
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= 0
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2b
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)(s.p.Nash,h,PTT )
=
3a

4b
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q
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)(s.p.Nash,h,PTT )
=
γa

2
,

(

q
D,C
A

)(s.p.Nash,h,PTT )
=0 ,
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q
M,D
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)(s.p.Nash,h,PTT )
=
a

4
,

(

q
D,C
B

)(s.p.Nash,h,PTT )
=
a

4
.

(73)

One can notice that, for each of these subgame-perfect Nash equilibria, par-
allel trade actually does not occur. However, parallel trade freedom has an
influence on the equilibrium behavior of the players (as one can see by com-
paring such equilibria with the ones obtained when paralleltrade is forbid-
den; see the previous game-theoretic model).

Third noncooperative game-theoretic model: parallel tradeis permit-
ted, and it occurs at equilibrium. Also in this case, the interaction of the
players (the manufacturer and the distributor) is described by a dynamic non-
cooperative game with perfect and complete information. Inthe first stage,
the manufacturer sets the wholesale pricep

M,D
B for the distributor, together

with a transfer paymentTP ≥ 0, chosen inside the set of transfer payments
that guarantee a non-negative surplus for the distributor (such a subset is de-
termined in later stages). Then, in the second stage, the manufacturer and
the distributor decide simultaneously the quantitiesq

M,C
A andqD,C

A to be sold,
respectively, to the consumers in the countryA. At the same time, the dis-
tributor also decides the quantityqD,C

B to be sold to the consumers in the
countryB. The pricepM,C

A = p
D,C
A is determined by a Cournot duopoly

model, whereas the pricepD,C
B is determined between by equating the of-

fer from the distributor and the demand of the consumbers in the country
B. Also this game is solved in [5] by backward induction. Again, the re-
sult of the equilibrium analysis depends on the value of the per-unit parallel
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trade costt. In the following, we report5 from [5] the prices and quantities
that are obtained at a subgame-perfect Nash equilibrium forwhich parallel
trade actually occurs (here, we use the superscript “PTO” to recall that the
present game-theoretic model refers to the parallel trade occurrence at equi-
librium). The following expressions hold under the assumptions1 < γ ≤ 2
andbt < 3γa

14
:
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)(s.p.Nash,PTO)
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5γa+ 7bt

13b
,

(

p
D,C
A

)(s.p.Nash,PTO)
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5γa+ 7bt

13b
,

(

p
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)(s.p.Nash,PTO)
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2γa+ 8bt

13b
,
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)(s.p.Nash,PTO)
=

a

2b
+

γa+ 4bt

13b
,
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q
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)(s.p.Nash,PTO)
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5γa+ 7bt

13
,

(

q
D,C
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)(s.p.Nash,PTO)
=
3γa− 14bt

13
,

(

q
M,D
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)(s.p.Nash,PTO)
=
a

2
+

2γa− 18bt

13
,

(

q
D,C
B

)(s.p.Nash,PTO)
=
a

2
− γa+ 4bt

13
, .

(74)

The associated transfer payment is

(TP )
(s.p.Nash,PTO) =

(9γa− 42bt)2

1521b
+

((13− 2γ)a− 8bt)2

676b
. (75)

Remark 4.1. All the equilibria above refer to the case in which the manufacturer
decides to do research and developments, hence, it incurs the total fixed costCF .
Moreover, one can see straightforwardly that all such equilibria are associated
with non-negative surpluses of the distributor and of the consumers in the two
countries, whereas the surplus of the manufacturer can be negative if the total
fixed costCF is too large (but it is always non-negative forCF = 0). However,
due to their subgame-perfectness, the equilibria above change only slightly if one
adds to the previous game-theoretic models the constraint that the surplus of the
manufacturer has to be non-negative, making the manufacturer decide not to do

5As already mentioned, the model presented in [5] refers to the choicesγ = 1 andb = 1. For
uniformity of notation with the previous models, we have re-done all its computations removing
the two assumptionsγ = 1 andb = 1, obtaining the results shown in formula (74).
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research and development in case its surplus is negative when research and de-
velopment are done. By adding such a constraint, indeed, one obtains exactly the
same expressions of the prices and quantities at equilibrium when the associated
surplus of the manufacturer is non-negative, whereas all the quantities and sur-
pluses become0 otherwise. Finally, with these modifications the values of the
global welfare associated with such equilibria are always non-negative, for each
model of the global welfare function. �

5. An application of the price of anarchy to parallel trade freedom/banning

In this section, for each of the global welfare models considered in Section
3 and each of thethreenoncooperative games described in Section 4, we apply
an adaptation to our context of the concept of price of anarchy from [9], in order
to compute the loss in efficiency in the optimization of the global welfare func-
tion, which is incurred when moving from the optimal solution determined by the
global planner to the prices and quantities at the “worst” subgame-perfect Nash
equilibrium of the game.

The following definition formalizes our adaptation of the definition of price of
anarchy (PoA) from [9] to thethreenoncooperative games above.For uniformity
of notation, in the following we consider the case in which the global planner
can optimize also the transfer price (see, e.g., the optimization problems (45),
(55), (66), and (61)). In the following definitions, in orderto have non-negative
values for the global welfare function in all ratios, we assume that both the global
planner and the manufacturer optimize their strategies according to Remarks 3.2
and 4.1, respectively, i.e., taking into account the possibility not to do research
and development.

Definition 5.1. For each of the global welfare models considered in Section 3
and each of thethreedynamic noncooperative games described in Section 4 mod-
eling parallel tradebanning/freedom, the price of anarchy (PoA) is defined as
the ratio between the optimal value of the global welfare obtained by the hypo-
thetical global planner of Section 3 under the sameconditionsof parallel trade
banning/freedom and the assumption that the global plannercan optimize also
the transfer price, and the value of the global welfare associated with the “worst”
subgame-perfect Nash equilibrium of the game (i.e., the one associated with the
smallest value of the global welfare).
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Remark 5.2. Definition 5.1 differs from the one given in [9] for generic non-
cooperative games for the two following reasons, which are needed to adapt the
original definition of price of anarchy to our context.

(i) In Definition 5.1, the numerator refers to the global planner, whereas the
denominator refers to the worst equilibrium, whereas [9] does the opposite
in its definition. This change in the definition is due to the fact that here we
are considering the maximization of the global welfare, whereas [9] refers
to a cost minimization problem. With this modification, one obtains in the
present context a value of the price of anarchy that is always6 greater than
or equal to1, likewise in the definition given in [9] for cost minimization
problems.

(ii) In our context, we consider subgame-perfect Nash equilibria, instead than
simply Nash equilibria. Indeed,all the equilibria reported in Section 4 are
subgame-perfect Nash equilibria. �

The importance of the concept of price of anarchy (in both Definition 5.1 and
its original version stated in [9]) derives from the observation that it allows one
to compare different noncooperative game-theoretic formulations, detecting when
a change in the rules of the game (due, e.g., to the possible intervention of a
policymaker) is needed to have a much more efficient (worst-case) equilibrium.

In the following, we also introduce a “normalized” price of anarchy, to better
compare the equilibria of the two games for which parallel trade is, respectively,
permitted/forbidden.

Definition 5.3. For each of the global welfare models considered in Section 3 and
each of thethreedynamic noncooperative games described in Section 4 modeling
parallel tradebanning/freedom, the normalized price of anarchy (PoAnorm.) is
defined as the ratio between the maximum of the optimal values of the global wel-
fare obtained by the hypothetical global planner of Section3 under each of the two
conditions of parallel tradebanning/freedom and the assumption that the global
planner can optimize also the transfer price, and the value of the global welfare
associated with the “worst” subgame-perfect Nash equilibriumof the game.

6When the ratio in the definition of the price of anarchy (or normalized price of anarchy, see
Definition 5.3) has the indeterminate form00 , by convention we assign to it the value1, as the
numerator and the denominator are equal.
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Remark 5.4. Since the optimization problems solved by the global planner when
parallel trade is forbidden are more constrained than the ones for which parallel
trade is permitted, the maximum in Definition 5.3 is always achieved in the situ-
ation in which there is parallel trade freedom. So,the two definitions of price of
anarchy and normalized price of anarchyactually coincide for thegamesmodel-
ing parallel trade freedom. However, we have statedDefinition 5.3without any
explicit reference to this fact, in order to obtain a definition that is more easily
generalizable to other games. �

Remark 5.5. As it will be shown in the next subsections, for each fixed choice
of the global welfare model and of one thethreenoncooperative games, all the
subgame-perfect Nash equilibria have the same value of the global welfare (which
depends only ona, b, the heterogeneity parameterγ, and the per-unit parallel trade
costt), so there is no need for searching for the “worst” equilibrium, as all such
equilibria are equivalent in efficiency. �

In the following, we express the price of anarchy/normalized price of anarchy
for the various models of the global welfare functions and noncooperative games
considered in the paper. In order to simplify the presentation, all the expressions
of the price of anarchy/normalized price of anarchy contained in the following
Propositions 5.6, 5.8, and 5.10, refer to the caseCF = 0, for which both the
global planner and the manufacturer decide to do research and development, and
for which both the numerator and the denominator in the definitions of the price
of anarchy/normalized price of anarchy have simplified forms. The extension
to the caseCF > 0 can be obtained straightforwardly, using the more general
expressions for the numerator and denominator presented inSections 3 and 4.

5.1. Evaluation of the prices of anarchy under the Bentham global welfare model

The following proposition provides expressions for the prices/normalized prices
of anarchy associated with the Bentham global welfare model and thethreegames
considered in Section 4,whenCF = 0.

Proposition 5.6. (i) For the case of the Bentham global welfare model and the
game modeling parallel trade banning, the price of anarchy coincides with the
normalized price of anarchy, and has the following expression for CF = 0:

PoA
(B)
NPT (γ) = PoA

(B)
NPT,norm.(γ) =

(γ2+1)a2

2b
a2

32b
(12γ2 + 7)

=
16(γ2 + 1)

12γ2 + 7
. (76)
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(ii) For the case of the Bentham global welfare model and the game modeling
parallel trade threat, the price of anarchy coincides with the normalized price of
anarchy, and has the following expressionfor CF = 0:

PoA
(B)
PTT (γ, t) = PoA

(B)
PTT,norm.(γ, t) =























































(γ2+1)a2

2b
a2

72b
(32γ2 − 4γ − 1)− 1

18
(bt2 + at+ 2γat)

if 0 ≤ t < tl ,

(γ2+1)a2

2b
a2

288b
(124γ2 − 44γ + 91)− 1

36
(4bt2 + 2γat− 5at)

if tl ≤ t ≤ th ,

(γ2+1)a2

2b
a2

32b
(12γ2 + 7)

=
16(γ2 + 1)

12γ2 + 7
if t > th .

(77)

(iii) For the case of the Bentham global welfare model and the game modeling
parallel trade occurrence, the price of anarchy coincides with the normalized
price of anarchy, and has the following expression forCF = 0, 1 < γ ≤ 2,
and0 ≤ t < 3γa

14b
:

PoA
(B)
PTO

(γ, t) = PoA
(B)
PTO,norm.

(γ, t) =

(γ2+1)a2

2b
11
26

(γa)2− 6
13

(γa)(bt)+ 23
26

(bt)2+ 3
8
a2

−
1
26

(γa)a− 2
13

bt

b

=
(γ2 + 1)a2

11
13

(γa)2 − 12
13

(γa)(bt) + 23
13

(bt)2 + 3
4
a2 − 1

13
(γa)a− 4

13
a(bt)

.

(78)

Proof. (i) As reported in [7] (see also [12] for a derivation), for the Bentham model
and the game modeling parallel trade banning, the value of the global welfare
associated with the subgame-perfect Nash equilibrium provided by formula (68)
has the following expression7 for CF = 0:

GW
(B,s.p.Nash,NPT )
NPT (γ) =

a2

32b
(12γ2 + 7) . (79)

Then, (77) is derived by applying (79), Propositions 3.3 and3.5, and Definitions
5.1 and 5.3.
(ii) As reported in [7] (see also [12] for a derivation), for the Bentham global
welfare model and the game modeling parallel tradethreat, the values of the global
welfare associated with the subgame-perfect Nash equilibria provided by formulas
(71), (72), and (73) have the following expressions8 for CF = 0:

7Such an expression can also be derived by using formulas (17)and (68).
8Such expressions can also be derived by using formulas (16),(71), (72), and (73).
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GW
(B,s.p.Nash,l,PTT )
PT (γ, t) =

a2

72b
(32γ2 − 4γ − 1)− 1

18
(bt2 + at+ 2γat) ,

GW
(B,s.p.Nash,i,PTT )
PT (γ, t) =

a2

288b
(124γ2 − 44γ + 91)− 1

36
(4bt2 + 2γat− 5at) ,

GW
(B,s.p.Nash,h,PTT )
PT (γ, t) =

a2

32b
(12γ2 + 7) . (80)

Then, (77) is derived by applying (80), Proposition 3.3, Definitions 5.1 and
5.3, and Remark 5.4.
(iii) As reported in [5], for the Bentham global welfare modeland the game mod-
eling parallel trade occurrence, the value of the global welfare associated with the
subgame-perfect Nash equilibrium provided by formula (74)has the following
expression9 for CF = 0, 1 < γ ≤ 2, and0 ≤ t < 3γa

14b
:

GW
(B,s.p.Nash,PTO)
PT (γ, t) =

(

γa+ 2γa+8bt
13

+ bt
)2

9b
+

2γa+ 8bt

13b

γa− 2 2γa+8bt
13

− 2bt

3

+

(

γa− 2 2γa+8bt
13

− 2bt
)2

9b
+

a2 −
(

2γa+8bt
13

)2

4b

+

(

γa− 5γa+7bt
13

)2

2b
+

(

a
2
− γa+4bt

13

)2

2b

=
11
26

(γa)2 − 6
13

(γa)(bt) + 23
26

(bt)2 + 3
8
a2 − 1

26
(γa)a− 2

13
a(bt)

b
.

(81)

Then, (78) is derived by applying (81), Proposition 3.3, Definitions 5.1 and
5.3, and Remark 5.4. �

Remark 5.7. By using formula (76), one can also see thatPoA
(B)
NPT (γ) is a de-

creasing function ofγ ∈ (1,+∞), lim
γ→1+

PoA
(B)
NPT (γ) =

32
19

, and

lim
γ→+∞

PoA
(B)
NPT (γ) =

4

3
. (82)

9Such an expression can also be derived by using formulas (16)and (74).
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Similarly, by exploiting formula (77), one can see that

lim
γ→1+

PoA
(B)
PTT (γ, t) =











32

19
if t = 0 ,

32

19
if t > 0 ,

(83)

(since, forγ sufficiently close to1, one getstl = 0, andth ≃ 0), and that, for each
fixed t ≥ 0,

lim
γ→+∞

PoA
(B)
PTT (γ, t) =

9

8
. (84)

Finally, by exploiting formula (78), one can see that, for0 ≤ t < 3γa
14b

,

lim
γ→1+

PoA
(B)
PTO(γ, t) =

1
79
104

− 8
13

(

bt
a

)

+ 23
26

(

bt
a

)2 , (85)

and

PoA
(B)
PTO(2, t) =

1
249
13

− 64
65

(

bt
a

)

+ 23
65

(

bt
a

)2 . (86)

�

5.2. Evaluation of the prices of anarchy under the first specification of the Rawls
global welfare model

The following proposition provides expressions for the prices/normalized prices
of anarchy associated with the first specification of the Rawlsglobal welfare
model and thethreegames considered in Section 4,whenCF = 0.

Proposition 5.8. (i) For the case of the first specification of the Rawls global
welfare model and the game modeling parallel trade banning, the price of anarchy
has the following expressionfor CF = 0:

PoA
(R,I)
NPT (γ) =

a2

2b
3a2

32b

=
16

3
, (87)

whereas the normalized price of anarchy is

PoA
(R,I)
NPT,norm.(γ) =

(γ2+1)a2

4b
3a2

32b

=
8(γ2 + 1)

3
. (88)

37



(ii) For the case of the first specification of the Rawls global welfare model and
the game modeling parallel tradethreat, the price of anarchy coincides with the
normalized price of anarchy, and has the following expression for CF = 0:

PoA
(R,I)
PTT (γ, t) = PoA

(R,I)
PTT,norm.(γ, t) =



































+∞ if 0 ≤ t < tl ,

(γ2+1)a2

4b

GW
(R,I,s.p.Nash,i,PT )
PTT (γ, t)

if tl ≤ t ≤ th ,

(γ2+1)a2

4b
3a2

32b

=
8(γ2 + 1)

3
if t > th ,

(89)

whereGW
(R,I,s.p.Nash,i,PT )
PTT (γ, t) is the value of the first specification of the Rawls

global welfare model computed when using the prices and quantities associated
with the subgame-perfect Nash equilibrium (72)10.
(iii) For the case of the first specification of the Rawls globalwelfare model and
the game modeling parallel trade occurrence, the price of anarchy coincides with
the normalized price of anarchy, and has the following expression forCF = 0,
1 < γ ≤ 2, and0 ≤ t < 3γa

14b
:

PoA
(R,I)
PTO(γ, t) = PoA

(R,I)
PTO,norm.(γ, t) =

(γ2+1)a2

4b

(a
2
− γa+4bt

13 )
2

2b

=
(γ2 + 1)a2

2
(

a
2 − γa+4bt

13

)2 . (90)

Proof. (i) For the first specification of the Rawls global welfare model and the
game modeling parallel trade banning, the value of the global welfare associated
with the subgame-perfect Nash equilibrium provided by formula (68) has the fol-

10See formula (93) in the proof for its expression.
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lowing expressionfor CF = 0, which can be derived by using also formula (19):

GW
(R,I,s.p.Nash,NPT )
NPT (γ) = min

{

a

2b

a

4
+

γa

b

γa

2
−

(

γa
2

)2

2b
,

− a

2b

a

4
+

a

b

a

4
−

(

a
4

)2

2b

}

= min

{

(3γ2 + 1)a2

8b
,
3a2

32b

}

=
3a2

32b
, (91)

where the mimimum is clearly achieved in correspondence of the countryB.
Then, (87) and (88) are derived by applying (91), Propositions 3.6 and 3.7, and
Definitions 5.1 and 5.3.
(ii) For the first specification of the Rawls global welfare model and the game
modeling parallel tradethreat, the values of the global welfare associated with the
subgame-perfect Nash equilibria provided by formulas (71), (72), and (73) have
the following expressionsfor CF = 0, which can be derived by using also formula
(18):

GW
(R,I,s.p.Nash,l,PT )
PTT (γ, t) = min

{

γa

b

(

a

6
(4γ − 1)− bt

3

)

−
(

a
6 (4γ − 1)− bt

3

)2

2b
,

0

}

= 0 , (92)
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GW
(R,I,s.p.Nash,i,PT )
PTT (γ, t) = min

{(

a

6b
(2γ + 1)− 2t

3

)(

a

12
(5− 2γ) +

bt

3

)

+
γa

b

(

a

6
(4γ − 1)− bt

3

)

−

(

a
6 (4γ − 1)− bt

3

)2

2b
,

(

a

b
−
(

a

6b
(2γ + 1)− 2t

3

))(

a

12
(5− 2γ) +

bt

3

)

−

(

a
12(5− 2γ) + bt

3

)2

2b

}

=

(

a

b
−
(

a

6b
(2γ + 1)− 2t

3

))(

a

12
(5− 2γ) +

bt

3

)

−

(

a
12(5− 2γ) + bt

3

)2

2b
, (93)

GW
(R,I,s.p.Nash,h,PT )
PTT (γ, t) = min

{

a

2b

a

4
+

γa

b

γa

2
−

(

γa
2

)2

2b
,

− a

2b

a

4
+

a

b

a

4
−

(

a
4

)2

2b

}

= min

{

(3γ2 + 1)a2

8b
,
3a2

32b

}

=
3a2

32b
, (94)

where all the minima above are achieved in correspondence ofthe countryB11.
Then, (89) is derived by applying (92), (93), (94), Proposition 3.6, Definitions 5.1
and 5.3, and Remark 5.4.

11For the cases of formulas (92) and (94), the proof that the minima are achieved in corre-
spondence of the countryB is immediate; for the case of formula (93), this is proved by ob-
serving that the national welfare of the countryA is greater than or equal to the surplus of
the consumers of the countryA obtained when the wholesale pricepM,C

A is equal to0, and
the national welfare of the countryA is smaller than or equal to the surplus of the consumers
of the countryB obtained when the retail pricepM,C

A is equal to0. Now, asγ > 1 and
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(iii) For the first specification of the Rawls global welfare model and the game
modeling parallel trade threat, the value of the global welfare associated with the
subgame-perfect Nash equilibrium provided by formula (74)has the following
expression forCF = 0, 1 < γ ≤ 2, and0 ≤ t < 3γa

14b
, which can be derived by

using also formula (18):

GW
(R,I,s.p.Nash,PT )
PTT (γ, t) = min

{

(

γa+ 2γa+8bt
13

+ bt
)2

9b
+

2γa+ 8bt

13b

γa− 2 2γa+8bt
13

− 2bt

3

+

(

γa− 2 2γa+8bt
13

− 2bt
)2

9b
+

a2 −
(

2γa+8bt
13

)2

4b

+

(

γa− 5γa+7bt
13

)2

2b
,

(

a
2
− γa+4bt

13

)2

2b

}

=

(

a
2
− γa+4bt

13

)2

2b
, (95)

where the minimum above is achieved in correspondence of thecountryB, as
it can be shown by simple algebraic manipulations. Then, (90) is derived by
applying (95), Proposition 3.6, Definitions 5.1 and 5.3, andRemark 5.4. �

Remark 5.9. By using formula (87), one can see thatPoA
(R,I)
NPT (γ) is a constant

function ofγ ∈ (1,+∞), so lim
γ→1+

PoA
(R,I)
NPT (γ) =

16
3

, and

lim
γ→+∞

PoA
(R,I)
NPT (γ) =

16

3
. (96)

Finally, by exploiting formula (88), one can see thatPoA
(R,I)
NPT,norm.(γ) is an in-

creasing function ofγ ∈ (1,+∞), lim
γ→1+

PoA
(R,I)
NPT,norm.(γ) =

16
3

, and

lim
γ→+∞

PoA
(R,I)
NPT,norm.(γ) = +∞ . (97)

(

q
M,C
A

)(s.p.Nash,i,PT )

≥
(

q
D,C
B

)(s.p.Nash,i,PT )

, the first surplus is greater than or equal to the

second one, hence the minimum in formula (93) is achieved in correspondence of the countryB.
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Similarly, by exploiting formulas (89) and (93), one can seethat

lim
γ→1+

PoA
(R,I)
PTT (γ, t) =











16

3
if t = 0 ,

16

3
if t > 0 ,

(98)

(since, forγ sufficiently close to1, one getstl = 0, andth ≃ 0), and that, for each
fixed t ≥ 0,

lim
γ→+∞

PoA
(R,I)
PTT (γ, t) = +∞ . (99)

Moreover, for each fixedγ > 1,

lim
t→+∞

PoA
(R,I)
PTT (γ, t) =

8(γ2 + 1)

3
. (100)

Finally, by using formula (90), one can see that, for0 ≤ t < 3γa
14b

,

lim
γ→1+

PoA
(R,I)
PTO(γ, t) =

1
(

1
2
− 1+4 bt

a

13

)2 , (101)

and

PoA
(R,I)
PTO(2, t) =

5
(

1
2
− 4(1+ bt

a )
13

)2 . (102)

�

5.3. Evaluation of the prices of anarchy under the second specification of the
Rawls global welfare model

Finally, the following proposition provides expressions for the prices/normalized
prices of anarchy associated with the second specification of the Rawls global wel-
fare model and thethreegames considered in Section 4,whenCF = 0.

Proposition 5.10. (i) For the case of the second specification of the Rawls global
welfare model and the game modeling parallel trade banning, the price of anarchy
has the following expressionfor CF = 0:

PoA
(R,II)
NPT (γ) =

a2

4b
a2

32b

= 8 , (103)
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whereas the normalized price of anarchy is

PoA
(R,II)
NPT (γ) =























(γ2+1)a2

8b
a2

32b

= 4(γ2 + 1) if 1 < γ ≤
√
3 ,

a2

2b
a2

32b

= 16 if γ >
√
3 .

(104)

(ii) For the case of the second specification of the Rawls global welfare model and
the game modeling parallel tradethreat, the price of anarchy coincides with the
normalized price of anarchy, and has the following expression for CF = 0:

PoA
(R,II)
PTT (γ, t)

= PoA
(R,II)
PTT,norm.(γ, t)

=



























































































































(γ2+1)a2

8b

GW
(R,II,s.p.Nash,i,PT )
PTT (γ, t)

if 1 < γ ≤
√
3 and 0 ≤ t ≤ th ,

(γ2+1)a2

8b
a2

32b

= 4(γ2 + 1) if 1 < γ ≤
√
3 and t > th ,

a2

2b

GW
(R,II,s.p.Nash,i,PT )
PTT (γ, t)

if
√
3 < γ ≤ 5

2
and 0 ≤ t ≤ th ,

a2

2b
a2

32b

= 16 if
√
3 < γ ≤ 5

2
and t > th ,

+∞ if γ >
5

2
and 0 ≤ t < tl ,

a2

2b

GW
(R,II,s.p.Nash,i,PT )
PTT (γ, t)

if γ >
5

2
and tl ≤ t ≤ th ,

a2

2b
a2

32b

= 16 if γ >
5

2
and t > th ,

(105)

whereGW
(R,II,s.p.Nash,i,PT )
PTT (γ, t) is the value of the second specification of the

Rawls global welfare model computed when using the prices and quantities asso-
ciated with the subgame-perfect Nash equilibrium (72)12.

12See formula (109) in the proof for its expression.
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(iii) For the case of the second specification of the Rawls global welfare model and
the game modeling parallel trade occurrence, the price of anarchy coincides with
the normalized price of anarchy, and has the following expression forCF = 0,
1 < γ ≤ 2, and0 ≤ t < 3γa

14b
:

PoA
(R,II)
PTO (γ, t) = PoA

(R,II)
PTO,norm.(γ, t) = +∞ . (106)

Proof. (i) For the second specification of the Rawls global welfare model and the
game modeling parallel trade banning, the value of the global welfare associated
with the subgame-perfect Nash equilibrium provided by formula (68) has the fol-
lowing expressionfor CF = 0, which can be derived by using also formula (21):

GW
(R,II,s.p.Nash,NPT )
NPT (γ) = min

{

γa

2b

γa

2
+

a

2b

a

4
=

(2γ2 + 1)a2

8b
,

(

3a

4b
− a

2b

)

a

4
=

a2

16b
,

γa

b

γa

2
− γa

2b

γa

2
−

(

γa
2

)2

2b
=

γ2a2

8b
,

(

a

b
− 3a

4b

)

a

4
−

(

a
4

)2

2b
=

a2

32b

}

=
a2

32b
, (107)

where the mimimum is clearly achieved in correspondence of the consumers in
the countryB. Then, (103) and (104) are derived by applying (107), Propositions
3.8 and 3.9, and Definitions 5.1 and 5.3.
(ii) For the second specification of the Rawls global welfare model and the game
modeling parallel tradethreat, the values of the global welfare associated with the
subgame-perfect Nash equilibria provided by formulas (71), (72), and (73) have
the following expressionsfor CF = 0, which can be derived by using also formula
(20):
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GW
(R,II,s.p.Nash,l,PTT )
PT

(γ, t) = min

{(

a

6b
(2γ + 1) +

t

3

)(

a

6
(4γ − 1)− bt

3

)

,

0 ,

γa

b

(

a

6
(4γ − 1)− bt

3

)

−
(

a

6b
(2γ + 1) +

t

3

)(

a

6
(4γ − 1)− bt

3

)

−

(

a
6
(4γ − 1)− bt

3

)2

2b
,

0

}

= 0 , (108)

GW
(R,II,s.p.Nash,i,PTT )
PT (γ, t) = min

{(

a

6b
(2γ + 1) +

t

3

)(

a

6
(4γ − 1)− bt

3

)

+

(

a

6b
(2γ + 1)− 2t

3

)(

a

12
(5− 2γ) +

bt

3

)

,

(

a

12b
(2γ + 7)− t

3
−

(

a

6b
(2γ + 1)− 2t

3

))

·
(

a

12
(5− 2γ) +

bt

3

)

,

−
(

a

6b
(2γ + 1) +

t

3

)(

a

6
(4γ − 1)− bt

3

)

+
γa

b

(

a

6
(4γ − 1)− bt

3

)

−

(

a
6
(4γ − 1)− bt

3

)2

2b
,

−
(

a

12b
(2γ + 7)− t

3

)(

a

12
(5− 2γ) +

bt

3

)

+
a

b

(

a

12
(5− 2γ) +

bt

3

)

−

(

a
12

(5− 2γ) + bt
3

)2

2b

}

, (109)

GW
(R,II,s.p.Nash,h,PTT )
PT

(γ, t) = min

{

γa

2b

γa

2
+

a

2b

a

4
=

(2γ2 + 1)a2

8b
,

(

3a

4b
− a

2b

)

a

4
=

a2

16b
,

γa

b

γa

2
− γa

2b

γa

2
−

(

γa
2

)2

2b
=

γ2a2

8b
,

(

a

b
− 3a

4b

)

a

4
−

(

a
4

)2

2b
=

a2

32b

}

=
a2

32b
, (110)
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where the minima in (108) and (110) are achieved in correspondence of the con-
sumers in the countryB13. Then, (105) is derived by applying (108), (109), (110),
Proposition 3.8, Definitions 5.1 and 5.3, and Remark 5.4.
(iii) For the second specification of the Rawls global welfaremodel and the game
modeling parallel trade occurrence, the value of the globalwelfare associated with
the subgame-perfect Nash equilibrium provided by formula (74) has the following
expression forCF = 0, 1 < γ ≤ 2, and0 ≤ t < 3γa

14b
, which can be derived by

using also formula (20):

GW
(R,II,s.p.Nash,PTO)
PT (γ, t) = min

{

(

γa+ 2γa+8bt
13

+ bt
)2

9b
+

2γa+ 8bt

13b

γa− 2 2γa+8bt
13

− 2bt

3

+

(

γa− 2 2γa+8bt
13

− 2bt
)2

9b
+

a2 −
(

2γa+8bt
13

)2

4b
,

0 ,
(

γa− 5γa+7bt
13

)2

2b
,

(

a
2
− γa+4bt

13

)2

2b

}

= 0 . (111)

where the minimum above is achieved in correspondence of thedistributor (due
to the presence of the transfer payment(75) at equilibrium). Then, (106) is derived
by applying (111), Proposition 3.8, Definitions 5.1 and 5.3,and Remark 5.4. �

Remark 5.11. By using formula (103), one can see thatPoA
(R,II)
NPT (γ) is a con-

stant function ofγ ∈ (1,+∞), so lim
γ→1+

PoA
(R,II)
NPT (γ) = 8, and

lim
γ→+∞

PoA
(R,II)
NPT (γ) = 8 . (112)

Finally, by exploiting formula (104), one can see thatPoA
(R,II)
NPT,norm.(γ) is a non-

13An in-depth investigation of where the minimum is achieved in formula (109) by varying its
parameters is beyond the scope of the work. However, for fixedvalues of the parameters, this can
be simply determined by comparing the four expressions in (109).
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decreasing function ofγ ∈ (1,+∞), lim
γ→1+

PoA
(R,II)
NPT,norm.(γ) = 8, and

lim
γ→+∞

PoA
(R,II)
NPT,norm.(γ) = 16 . (113)

Similarly, by exploiting formulas (105) and (109), one can see that

lim
γ→1+

PoA
(R,II)
PTT (γ, t) =

{

8 if t = 0 ,

8 if t > 0 ,
(114)

(since, forγ sufficiently close to1, one getstl = 0, andth ≃ 0), and that, for each
fixed t ≥ 0,

lim
γ→+∞

PoA
(R,II)
PTT (γ, t) = +∞ . (115)

Moreover, for each fixedγ > 1,

lim
t→+∞

PoA
(R,II)
PTT (γ, t) =

{

4(γ2 + 1) if 1 < γ ≤
√
3 ,

16 if γ >
√
3 ,

(116)

Finally, by using formula (106), one can see that, for0 ≤ t < 3γa
14b

,PoA
(R,II)
PTO (γ, t) =

+∞ for everyγ ∈ (1, 2]. �

5.4. A summary of the obtained results

Table 1 summarizes the results obtained about the price of anarchy/normalized
price of anarchy for the noncooperative games and global welfare models consid-
ered in the paper.Limiting the comparison to the cases of parallel trade ban-
ning/parallel trade threat, which - differently from the case of parallel trade oc-
currence - do not impose restrictions onγ, an inspection ot Table 1 shows the
following:

(i) for the Bentham global welfare model, using similar arguments as the ones
used in the proofs of [7, Propositions 3-5], one can prove that, for some
values ofγ and t, the price of anarchy when parallel trade is forbidden is
greater than the price of anarchy when there is parallel tradethreat; however,
there exist also some values ofγ andt for which the opposite holds (see also
the plots in Figures 2 and 3);
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(ii) for the first specification of the Rawls global welfare model and0 ≤ t < tl
or t > th, the price of anarchy when parallel trade is forbidden is always
smaller than the price of anarchy when there is parallel trade threat, since
16
3
<

8(γ2+1)
3

< +∞. As confirmed by numerical results (see also the plots
in Figures 2 and 3), this is still true fortl ≤ t ≤ th. However, when the
normalized price of anarchy is considered, the two cases areequivalent for
t > th;

(iii) for the second specification of the Rawls global welfaremodel and
(

γ >
5
2
, 0 ≤ t < tl

)

or t > th, the price of anarchy when parallel trade is forbidden
is always smaller than the price of anarchy when there is parallel tradethreat,
since8 < 16 < 4(γ2 + 1) < +∞. As confirmed by numerical results (see
also the plots in Figures 2 and 3), this is still true fortl ≤ t ≤ th. However,
also for this model, when the normalized price of anarchy is considered, the
two cases are equivalent fort > th.

Figures 2 and 3 show the behavior of the price of anarchy (as a function of
the per-unit parallel trade costt) for the noncooperative games and global welfare
models examined in the paper, for two choices of the set of parametersa, b, andγ.
A MATLAB 7.7.0 implementation has been used to generate the two figures.The
two figures refer only to the cases of the games modeling parallel trade banning
and parallel trade threat, respectively, sinceγ = 4 > 2 has been chosen to generate
the plots in the first figure, whereas the conditionbt < 3γa

14b
holds only for a small

range of values fort in the second figure.In Figure 2(a), which refers to the
Bentham global welfare model, the price of anarchy when thereis parallel trade
threatis always smaller than or equal to the price of anarchy when parallel trade
is forbidden. However, both prices of anarchy are close to1, indicating that the
corresponding subgame-perfect Nash equilibria are quite efficient, and no change
of rules of the games (due, e.g., to the possible intervention of a policymaker) is
really needed to improve their efficiency significantly. A similar situation occurs
in Figure 3(a), which also shows that, still for the Bentham global welfare model
but for a different choice ofγ, there is an interval of values for the per-unit parallel
trade costt for which the price of anarchy when there is parallel tradethreatis
smaller than the price of anarchy when parallel trade is forbidden, and another
interval of values for which the opposite occurs. Differently from the case of the
Bentham model, Figures 2(b) and 2(c), which refer to the first specification of
the Rawls global welfare model, provide extremely large values for the prices of
anarchy when there is parallel tradethreat, revealing the needfor changing the
rules of the game if one is interested to obtain efficient equilibria. In particular, in
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Figure 2(b), for sufficiently small values oft (i.e., for0 ≤ t < tl), such a price of
anarchy is even infinite, according to formula (89). This occurs since in such cases
the marketB is not served at equilibrium, as shown by formula (71). Instead, such
a behavior is not observed in Figure 3(b), as the corresponding thresholdtl is equal
to 0, due to the different choice of the parameterγ. As anticipated, Figures 2(b,c)
and 3(b) also show that, for the first specification of the Rawlsmodel, the price of
anarchy when there is parallel tradethreatis always greater than or equal to the
price of anarchy when parallel trade is forbidden, and that the equality holds when
one considers instead the normalized price of anarchy, andt is sufficiently large.
Finally, similar comments can be made for Figures 2(d) and 2(e) and Figure 3(c),
which refer to the second specification of the Rawls global welfare model.

Concluding, Table 1 and the numerical results in Figures 2 and3 show that
the results of the comparison in terms of the price of anarchybetween thenon-
cooperative games examined in the paper(modeling, respectively,parallel trade
banning/parallel trade threat/parallel trade occurrence), are sensitive to the val-
ues of the per-unit parallel trade cost and of the relative market size of the two
countries, and to the choice of the global welfare function.

6. Discussion

The price of anarchy is a useful tool to measure the efficiencyof equilib-
rium solutions to noncooperative games. Although originally proposed in [8] for
the case of Nash equilibria, it can be extended to other solution concepts (e.g.,
subgame-perfect Nash equilibria). In practice, when the price of anarchy for a
specific noncooperative game is “large”, this means that therules of the game
should be changed, in order to obtain much more efficient equilibria. Instead,
when it is a “small”, no change of rules by a policymaker is really needed to
improve the efficiency significantly.

In the noncooperative game-theoretic models of parallel tradebanning/freedom
examined in this paper, the price of anarchy measures the ratio between the op-
timal value of the global welfare and its value obtained in correspondence of the
“worst” equilibrium. In the paper we have obtained closed-form expressions for
the price of anarchy for two noncooperative games proposed in [7] to model the
interaction between a manufacturer and a distributor possibly involved in parallel
trade of pharmaceuticals,and for a related model proposed in [5]. Threesitu-
ations have been considered:the case when parallel trade is forbidden, the case
when there is parallel trade threat but parallel trade does not actually occur at equi-
librium, and the case of actual parallel trade occurrence atequilibrium. Finally,
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First game parallel trade banning (γ > 1, CF = 0)
Bentham m. without normalization:

16(γ2+1)

12γ2+7

with normalization:
16(γ2+1)

12γ2+7

Rawls m. without normalization:
16
3

(I spec.) with normalization:
8(γ2+1)

3
Rawls m. without normalization:

8
(II spec.) with normalization:

4(γ2 + 1) if 1 < γ ≤
√
3

16 if γ >
√
3

Second game parallel trade threat (γ > 1, CF = 0)
Bentham m. with/without normalization:

(γ2+1)a2

2b
a2

72b
(32γ2

−4γ−1)− 1
18

(bt2+at+2γat)
if 0 ≤ t < tl

(γ2+1)a2

2b
a2

288b
(124γ2

−44γ+91)− 1
36

(4bt2+2γat−5at)
if tl ≤ t ≤ th

16(γ2+1)

12γ2+7
if t > th

Rawls m. +∞ if 0 ≤ t < tl

(I spec.)
(γ2+1)a2

4b

GW
(R,I,s.p.Nash,i,PTT )
PT

(γ,t)
if tl ≤ t ≤ th

8(γ2+1)
3

if t > th

Rawls m.
(γ2+1)a2

8b

GW
(R,II,s.p.Nash,i,PTT )
PT

(γ,t)
if 1 < γ ≤

√
3 and0 ≤ t ≤ th

(II spec.) 4(γ2 + 1) if 1 < γ ≤
√
3 andt > th

a2

2b

GW
(R,II,s.p.Nash,i,PTT )
PT

(γ,t)
if
√
3 < γ ≤ 5

2
and0 ≤ t ≤ th

16 if
√
3 < γ ≤ 5

2
andt > th

+∞ if γ > 5
2

and0 ≤ t < tl
a2

2b

GW
(R,II,s.p.Nash,i,PTT )
PT

(γ,t)
if γ > 5

2
andtl ≤ t ≤ th

16 if γ > 5
2

andt > th

Third game parallel trade occurrence(1 < γ ≤ 2, 0 ≤ t < 3γa
14b

, CF = 0)

Bentham m. (γ2+1)a2

11
13

(γa)2− 12
13

(γa)(bt)+ 23
13

(bt)2+ 3
4
a2

−
1
13

(γa)a− 4
13

a(bt)

Rawls m. (γ2+1)a2

2
(

a
2
−

γa+4bt
13

)2

(I spec.)
Rawls m. 0
(II spec.)

Table 1: Expressions of the price of anarchy obtained for thenoncooperative
games and global welfare models examined in the paper.
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(c) Rawls model (I spec.), zoomed in
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(d) Rawls model (II spec.)
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(e) Rawls model (II spec.), zoomed in

Figure 2: Plots of the prices of anarchy (as functions of the per-unit parallel trade
costt) for some ofthe noncooperative games andall the global welfare models
examined in the paper, fora = 2, b = 1.5, andγ = 4.
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(b) Rawls model (I spec.)

0 1 2 3 4
5

10

15

20

25

30

35

40

per-unit parallel trade cost, t

p
ri
ce

o
f
a
n
a
rc
h
y
/
n
o
rm

.
p
ri
ce

o
f
a
n
a
rc
h
y

par. trade threat
par. trade banning
par. trade banning, norm. PoA
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Figure 3: Plots of the prices of anarchy (as functions of the per-unit parallel trade
costt) for some ofthe noncooperative games andall the global welfare models
examined in the paper, fora = 2, b = 1.5, andγ = 1.6.
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we have compared the expressions of the price of anarchy obtained forsome of the
noncooperative games andall the global welfare models examined in the paper.
The results of the comparison are sensitive to the values of the per-unit parallel
trade cost and of the relative market size of the two countries, and to the choice of
the global welfare function.Although the prices of anarchy for the three games
have been evaluated in Section 5 under the simplifying assumption of a zero total
fixed cost of production (in order to obtain closed-form expressions), the results
of the analysis in Section 3 could be used, in principle, to evaluate such prices
of anarchy numerically, for the case of a non-zero total fixedcost of production.
Up to the authors’ knowledge, the application of the conceptof price of anarchy
to noncooperative games modeling parallel trade of pharmaceuticals is novel. In
principle, the evaluation of the price of anarchy and of its normalized version may
be extended to other choices of the global welfare function.Moreover, as another
possible extension, the price of anarchy could be evaluatedalso for other nonco-
operative games modeling parallel trade, such as the ones studied in [2, 4, 6] (e.g.,
othernoncooperative games for which parallel trade actually occurs at equilib-
rium, when parallel trade is permitted). The results of sucha comparison would
be useful to measure the efficiency of the proposed solutions, and to detect when
policymakers should change the rules of the game in order to increase the value
of the global welfare significantly.
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